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The Upper Floridan Aquifer (UFA) is a primary source of potable water supply for 

the state of Florida. The Santa Fe River Basin (SFRB), located in north central Florida, 

relies exclusively on the UFA for irrigation and public water supply. The unconfined 

portion of the SFRB is vulnerable to contamination from agricultural activities and, as a 

result, the Nitrate-Nitrogen (NO3-N) concentration in springs discharging from the 

aquifer have increased substantially from background concentrations of <0.1 mg/L to 5 

mg/L over the past 40-50 years. Most springs in the SFRB violate the State of Florida 

Numeric Nutrient Criteria (NNC) of 0.35 mg/L.  

This research leveraged available experimental and observational data in the 

SFRB to develop field-scale and watershed scale hydrologic models to quantify the 

nitrate leaching reductions that can be expected from the adoption of improved 

agricultural nutrient and irrigation management practices in the SFRB, and to estimate 

the impact of these leaching reductions on nitrate concentrations in the Santa Fe River.   

Results showed that leaching from existing agricultural land uses in SFRB such as 
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grazed pasture, row crops, forests and hay currently contribute approximately 55%, 

22%, 10% and 8% of the total NO3-N stream load, respectively. Results also showed 

that adoption of agricultural best management practices that are considered 

economically feasible with currently available technology throughout the watershed has 

the potential to reduce total NO3-N load to the Santa Fe River by approximately 31%.  

However, model results suggest that these reductions are not adequate to meet 

the NO3-N NNC established to protect springs and rivers in the basin if current land use 

patterns are maintained. Simulations indicated that if in the year 2020 current row crop 

and hay land uses were converted from conventional to best management practices, 

and all pasture was converted to native grassland, the NNC could be met by 2080.  If all 

row crops, hay and pasture were converted to forest in 2020, simulations indicated the 

NNC could be met in 2055.   

Results of this study should be useful for incorporation into investigations 

economic-environmental tradeoffs of changes in land use and land management 

practices in the Santa Fe River Basin.  Ultimately these studies should provide a 

framework for developing effective, socially acceptable strategies for achieving stringent 

water quality regulations while maintaining a robust agricultural economy that is 

transferrable to other agricultural watersheds throughout the world.  
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CHAPTER 1 
INTRODUCTION 

Providing adequate clean water to future generations from finite water resources 

is a driving factor for research and development work on sustainable watershed 

management practices (Environmental Protection Agency (EPA), 2012). The rising 

demand for clean water, food and energy encourages increased application of fertilizers 

(Akhavan et al., 2010), development of various best management practices for different 

land uses (Srinivasan et al., 2010; Gao et al., 2017), and changes in land uses (Scanlon 

et al., 2007; Dosdogru et al., 2020) which pose substantial threats to the surface and 

groundwater resources (Scanlon et al., 2007). Improved watershed management is 

imperative to protect water resources and aquatic flora and fauna. Many watershed 

studies have emphasized water quantity rather than quality, although water quality is 

closely coupled to water quantity and cannot be overlooked in sustainable water 

resource management planning. Holistic study of the water system along with all factors 

affecting its long-term availability is of utmost importance for watershed management 

(Zhang et al., 2016; Trang et al., 2017). Water quality can be directly affected through 

several mechanisms such as contaminants transported from land into the water bodies 

through surface runoff and groundwater leaching (Arheimer et al., 2005).  

Among many factors affecting the sustainable use of groundwater resources, 

non-point source (NPS) pollutants are an important component due to the large spatial 

extent of these sources and their long-term impact on the deterioration of groundwater 

quality (Takamatsu et al., 2014). The most common NPS pollutants such as synthetic 

nitrogen fertilizer, organic manure and sewage sludge have been of widespread 

concern due to the challenges associated with their quantification and remediation. 
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Moreover, because NPS pollutants such as Nitrate-Nitrogen (NO3-N) are spread over 

large areas in relatively low concentrations, their detrimental environmental and health 

related effects are chronic rather than acute (Mitsch et al., 1999; Bowen et al., 2007; De 

la Monte et al., 2009), and the task of cleanup is difficult to accomplish (Loague et al., 

1998). Karst aquifers are highly susceptible to NO3-N loading from various sources 

because of rapid water infiltration through the epikarst or sinkholes which often provide 

direct connections between the surface and aquifer (Peterson et al., 2002; Ravbar and 

Goldscheider, 2009).The adverse effect of elevated NO3-N in aquifer connected 

ecosystems such as springs, rivers, lakes, and estuaries prompted regulators such as 

Florida Department of Environmental Protection (FDEP)  to establish limits of allowable 

Total Maximum Daily Loads (TMDL) of NO3-N to surface waters and maximum 

allowable NO3-N concentrations in groundwater and surface waters. This research aims 

to utilize a combination of field-scale and watershed scale hydrologic models, with 

available experimental and observational data, to quantity the NO3-N leaching 

reductions as well as groundwater, spring and river NO3-N concentration reductions that 

can be expected from widespread adoption of improved agricultural nutrient and 

irrigation management practices in karst watersheds overlying the Upper Floridan 

Aquifer.  

Floridan Aquifer System 

The Floridan Aquifer System (FAS), located in the southeast United States and 

extending over 260,000 km2, is one of the most productive aquifer systems in the USA 

(Van Beynen et al., 2012; Maupin et al., 2014). It is the major source of public water 

supply and irrigation in north and central Florida (Bush and Johnson, 1988), supporting 

a productive agricultural economy and supplying more than 10 million people with 

https://www.sciencedirect.com/science/article/pii/S0143622811001743#bib25
https://www.sciencedirect.com/science/article/pii/S0143622811001743#bib25
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drinking water (Marella, 2014). The FAS is a karst system, and thus presents unique 

challenges to land use planners because of inherent vulnerabilities to contamination 

through direct connections between the aquifer and the surface.  

The Upper Floridan Aquifer (UFA) in north Florida is mainly comprised of Ocala 

Limestone, ranges in thickness from 0 to 54 meter, and is underlain by a lower 

permeable limestone called the Avon Park Formation that is 243-335 meter thick 

(Figure 1-1). Where the Ocala Limestone is not exposed at the surface, it is covered by 

the Hawthorn Formation and a surficial aquifer of Plio-Pleistocene sands (Scott et al., 

2004). Spatially variable erosion of the Hawthorn Formation has led to variations in UFA 

confinement throughout North Florida. The erosional boundary of the Hawthorn 

Formation is known as the Cody Escarpment, and defines a critical boundary for 

defining FAS vulnerability to contamination. Downgradient from the Cody Escarpment 

limestone is exposed and vulnerability is increased by enhanced surface-to-aquifer 

connectivity. The geologically unique Santa Fe River Basin (SFRB) (Figure 1-1), 

situated overlying the FAS, provides an excellent study area for this research. The 

SFRB is a well instrumented basin with various state and federal government agencies 

collecting hydrologic and water quality data at daily to monthly temporal scales, and it 

has been the focus of numerous field scale studies. Thus, there is a wealth of 

information available which can be used to develop and validate integrated hydrologic-

water quality models. 

Santa Fe River Basin  

Over the past several decades, with the intensification of agricultural activities, 

population growth, socioeconomic development, and climate change ecological and 

environment problems associated with the SFRB water quality have escalated (Santa 
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Fe River Basin, Basin Management action Plan, 2012). Previous studies have shown 

the increase of NO3-N in some springs in the region from background concentrations 

(≤0.1 mg/L NO3-N) to above 5 mg/L NO3-N over the last 40 years (Katz et al., 1999; 

Katz, 2004). These springs violate the State of Florida Numeric Nutrient Criteria (NNC) 

of 0.35 mg/L NO3-N. Increasing NO3-N concentrations have been found in several 

springs within the SFRB in Florida (e.g., Devil’s Complex springs, Hornsby, Ichetuknee, 

Ginnie springs with >0.35 mg/L NO3-N) (Upchurch et al., 2007; FDEP, 2018; Santa Fe 

River and Springs Environmental Analysis, 2020).   

Potential nutrient sources in the Santa Fe River Basin are diverse and include 

various point and nonpoint sources like agricultural lands, wastewater spray fields, 

areas with dense concentrations of septic tanks, and storm-water runoff to sinkholes 

(FDEP, 2012). However, agricultural activities like cropland farming, fertilization and 

animal farming have contributed large quantities of nitrogen to groundwater in the Santa 

Fe River Basin in northern Florida (Katz et al., 1999).  Studies in the SFRB area report 

evidence that most NO3-N pollution found in the lower basin comes from fertilizer 

sources (Katz et al., 2009). 

Assessment of the pollutant load from non-point sources such as agriculture lands to 

water systems is a challenge compared to the contributions from point sources like 

industries and wastewater treatment plants due to the difficulty of accurate estimation of 

NO3-N leaching from spatially variable soils, land uses and nutrient and water 

management practices (Eller et al., 2017). 

In response to the increasing NO3-N concentrations and spring ecosystem 

degradation, the Florida Department of Environmental Protection (FDEP) set a Numeric 
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Nutrient Criteria (NNC) of 0.35 mg/L NO3-N, as an annual geometric mean, for water 

emanating from UFA springs (62-302.530 (47) (b), F.A.C.; FDEP, 2013). Total 

Maximum Daily Loads (TMDLs; US Environmental Protection Agency, 2016) estimated 

to achieve the NNC, and Basin Management Action Plans (BMAPs) required to meet 

the TMDL, have been established for UFA springs not meeting the NNC. BMAPs 

specify a suite of projects/actions that are collectively intended to achieve the TMDL. 

For agricultural operations, adoption of Best Management Practices (BMPs) is required 

in spring BMAP areas. In Florida BMPs are defined as technically and economically 

feasible research-based practices developed to conserve water supply, as well as to 

maintain or improve surface and groundwater quality by reducing or treating pollutant 

discharges entering water resources (FDACS, 2015).  

Nitrogen Research Needs 

BMAPs for the SFRB estimate that synthetic fertilizer is the largest source of 

NO3-N load to springs and specify that NO3-N load reductions of approximately 65% 

(FDEP, 2018) are required to meet the NNC. A quantitative assessment of the effects of 

alternative water and nutrient management practices on crop yield, irrigation water 

requirements and NO3-N leaching in the SFRB is needed to determine whether 

adoption of agricultural BMPs can achieve the reduction in loads mandated to achieve 

the NNC. This dissertation utilizes a combination of field-scale and watershed scale 

hydrologic models to 1) leverage the available experimental and observational data in 

the SFRB to quantity the nitrate leaching reductions that can be expected from the 

adoption of improved agricultural nutrient and irrigation management practices in the 

SFRB; 2)  estimate the impact of these leaching reductions on nitrate concentrations in 

the Santa Fe River; and 3) determine the most vulnerable regions of the SFRB where 
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changes in practices could be targeted, and estimate the lag times required to observe 

reductions in river NO3-N concentrations as a result of potential changes in practices in 

these vulnerable regions. 

Organization of the Dissertation 

This research is focused on the evaluation of NO3-N load from different land uses 

and different water and fertilizer management practices across different soil types over 

long term weather conditions in the SFRB. The challenges associated with predicting 

spatial and temporal variation in hydrology and NO3-N fate and transport are 

investigated through experimental data and hydrological modeling efforts. Chapter 2: 

“Quantifying nitrate leaching to groundwater from a corn-peanut rotation under a variety 

of irrigation and nutrient management practices in the Suwannee River Basin, Florida” 

includes a detailed SWAT modeling study of the field-scale NO3-N leaching, nitrogen 

(N) uptake, soil NO3-N storage and yield from a corn-peanut rotation using data from a 

three-year irrigation and N fertilizer rate management experiment conducted in Live 

Oak, Florida (Zamora Re et al., 2018). In addition, the effect of planting a cover crop in 

between corn-peanut growing seasons on crop yield and NO3-N leaching was simulated 

as an additional management practice to investigate further reduction in leaching during 

the fallow period.  This work provides a framework for developing effective strategies for 

achieving stringent water quality regulations while maintaining a robust agricultural 

economy that is transferrable to other agricultural watersheds throughout the world.  

Chapter 3: “Impact of land use and land management practices on nitrate loading 

to groundwater in Santa Fe River Basin (SFRB)” develops a watershed scale SWAT 

model to quantify the water and nitrogen budgets for current land uses and water and 

nutrient practices throughout the SFRB;  predict the spatiotemporal pattern of water flux, 
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NO3-N loading, transport and transformation from the root zone, through the aquifer, to 

the Santa Fe River for different management practices; and evaluate the potential for 

alternative land use and water and nutrient management practices to achieve the 65% 

reduction in NO3-N load estimated to be required to achieve the NNC in streams in the 

SFRB.  

Chapter 4: “Estimation of groundwater contributing area and travel time to 

springs in Santa Fe River Basin” analyzes hydrogeologic factors affecting the 

contributing area and travel time distribution for groundwater emerging in the Santa Fe 

River near Ft. White. Recharge from the watershed SWAT model was used to drive the 

North Florida-Southeast Georgia (NFSEG) MODFLOW model. The resulting 

groundwater fluxes were used in MODPATH to perform a backward particle tracking to 

estimate the groundwater travel time distribution and groundwater contributing area for 

for the reach of the Santa Fe River containing the Devil’s complex springshed. Travel 

time based particle transport simulations were carried out to estimate the fate and 

transport of NO3-N from the groundwater contributing area to the Santa Fe River to 

investigate alternative scenarios for meeting the numeric nutrient criteria (NNC) using 

land-use and management system specific nitrate loadings from the watershed SWAT 

model. 

Chapter 5 summarizes the key findings of Chapters 2 through 4, discusses 

implications of key findings, and makes recommendations for continued efforts to 

improve watershed-scale prediction of sources, fate, and transport of nitrate in 

agricultural watersheds for alternative land use and management practices.  
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CHAPTER 2 
QUANTIFYING NITRATE LEACHING TO GROUNDWATER FROM A CORN-PEANUT 
ROTATION UNDER A VARIETY OF IRRIGATION AND NUTRIENT MANAGEMENT 

PRACTICES IN THE SUWANNEE RIVER BASIN, FLORIDA 

 Background 

Agricultural intensification and extensification to meet the food demand of a 

growing global population has led to elevated groundwater pumping and nitrogen (N) 

fertilizer usage worldwide (Spalding and Exner, 1993; Vitousek et al., 1997). Synthetic 

and animal waste-based N fertilizers are used in most agricultural operations to 

enhance plant growth (Motavalli et al., 2008), but excessive application may increase 

the risk of nitrate loading to groundwater (Singh et al., 1995; Nolan et al., 1996; Erisman 

et al.,2008). The adverse effects of elevated nitrate concentrations on human health (De 

la Monte et al., 2009) and the environment (Mitsch et al., 1999; Bowen et al., 2007) 

have prompted regulators to establish limits of allowable nitrate concentration in 

groundwater and surface water. Meeting these criteria can be challenging since they 

often require widespread changes in water and nutrient management practices and the 

effects of these changes can take decades to manifest in receiving waters (Vero et al., 

2017; Van Meter et al., 2018). Local assessment and modeling of management practice 

changes that provide for agricultural sustainability while maintaining groundwater quality 

are thus necessary to develop informed and effective watershed management 

strategies.  

Connectivity between agricultural lands and the underlying aquifer plays a 

significant role in the mass of nitrate leaching to groundwater (Kellman and Marcel , 

2003). Important factors include soil drainage characteristics, depth to water table, crop 

type and mass of N in applied fertilizer. Nitrate concentrations are typically higher under 
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agricultural fields with well-drained soils overlying highly permeable aquifers (Nolan 

2001). For example, high concentrations of nitrate are often found in karst aquifers, 

where discrete fractures and conduits can rapidly transmit large volumes of nitrate-

enriched water with little attenuation (Vesper et al., 2001; Doerfliger et al., 1999). The 

vulnerability of karst aquifers to nutrients from agriculture has been well-documented 

(Boyer and Pasquerall, 1995; Boyer et al., 1996; Panno et al., 2001; Peterson et al., 

2002). However, effective management strategies to minimize the nitrate loading to 

karst aquifers must be developed considering local economies and hydrogeologic 

settings (Coxon, 2011). Development and application of robust models to support 

decision-making is especially important in karstic regions, where wide variation in travel 

times can cause lags of years to decades between practice implementation and surface 

water quality improvement (Meals et al., 2010; Amin et al., 2017; Fenton et al., 2017).  

The karstic Upper Floridan aquifer (UFA) is one of the most productive aquifers 

in the world.  It is the major source of public water supply and irrigation in north and 

central Florida (Bush and Johnson, 1988), supporting a productive agricultural economy 

and supplying more than 10 million people with drinking water. Large portions of the 

UFA are characterized by unconfined, hydraulically connected carbonate rocks with 

high permeability and transmissivities, which allow nutrients to leach into the aquifer and 

quickly travel long distances (Bush and Johnson, 1988; Arthur et al., 2007). Agriculture 

and silviculture are the predominant land uses in the Suwanee River Basin (SRB) that 

overlies the UFA in north Florida. Increases in population and changes in land use 

across Florida have shifted the SRB toward more intensive agriculture practices such as 

row crops, cow-calf operations, dairy and poultry farms (FDEP, 2012), which has 
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resulted in increased nitrate-nitrogen (NO3-N) concentrations in the UFA (FDACS 

2015a; Harrington et al., 2010; Hochmuth et al., 2014). The region also has a high 

density of large freshwater springs, supplied with water from the UFA. Nitrate-N 

concentrations in UFA springs have increased over the last 40 years from background 

concentrations of ≤0.1 mg/L NO3-N to above 5 mg/L NO3-N in some springs (Katz et al., 

1999; Katz, 2004).  

In response to increasing NO3-N concentrations and spring ecosystem 

degradation, a Numeric Nutrient Criteria (NNC) of 0.35 mg/L NO3-N was set for water 

emanating from UFA springs (62-302.530 (47) (b), F.A.C.; FDEP, 2013). Total 

Maximum Daily Loads (TMDLs; US Environmental Protection Agency, 2016) required to 

achieve the NNC were then estimated, and Basin Management Action Plans (BMAPs) 

required to meet the TMDL have been established for UFA springs not meeting the 

NNC. Current BMAPs for the SRB estimate that synthetic fertilizer is the largest NO3-N 

source to springs and specify load reductions ranging from 35% (FDEP, 2012) to 88% 

(FDEP, 2018) to meet the NNC. In this regulatory setting, a quantitative assessment of 

the effects of alternative water and nutrient management practices on crop yield, 

irrigation water requirements, and NO3-N leaching is needed to determine whether 

adoption of agricultural BMPs can achieve the load reductions mandated to achieve the 

NNC. Critically, NNC have been partially or fully developed for 29 US states and 

territories (EPA, n.d.) and are widely adopted across Europe as part of the European 

Water Framework Directive (Poikane et al., 2019). Across regions, developing effective 

nutrient mitigation approaches to meet these environmental standards while also 
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meeting human food demand is a grand global challenge (Robertson et al., 2005; 

Davidson et al., 2015) with agricultural water management at its core. 

Agricultural BMPs have been widely proposed to reduce adverse water quality 

impacts both globally (Liu et al., 2017) and in the SRB (FDEP, 2012). However, 

determining the effectiveness of these practices for reducing N leaching and meeting 

regional water quality goals is an on-going challenge due to difficulties in quantifying 

nutrient fate and transport processes (Chaubey et.al, 2010). For instance, measuring N 

fertilizer transformations and losses (e.g., leaching, volatilization, and denitrification) is 

expensive, time-consuming, and difficult due to variability in weather, soil properties and 

agricultural management practices across fields (Mulla et.al., 2004). Given these 

challenges, computer simulation models are commonly used to leverage field 

observations and improve estimates of the fate and transport of water and nutrients (Xie 

et al., 2015). However, data-intensive model calibration and validation for the specific 

soil, climate and agricultural management conditions being modeled must be performed 

for models to be effective (Ramos and Carbonell, 1991) and trusted by stakeholders 

(Karki et al., 2020).  

This work leverages a uniquely robust experimental dataset (Zamora et al., 2018, 

2020) to provide quantitative estimates of long-term changes in crop yield, water use, 

and NO3-N leaching under alternate management scenarios. This effort is part of 

longer-term project that is bringing together scientists, regulators, agricultural producers, 

and non-governmental organizations to collaboratively evaluate tradeoffs among crop 

production, water quality, and water quantity associated with alternative land use and 

land and water management strategies. The coupled SWAT-MODFLOW model (Aliyari 
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et al., 2019; Wei et al., 2019 ) was selected as the platform for this analysis because 

complex surface-groundwater interactions in the karst watershed require explicit 

modeling of the groundwater system and its interaction with surface waters, which are 

not rigorously represented in typical agricultural watershed models such as SWAT 

(Arabi et al., 2008; Bieger et al., 2014; Cerro et al., 2014; Gassman et al., 2014; 

Francesconi et al., 2016), AGNPS (Young et al., 1989) or EPIC (Williams, 1989). Thus, 

the immediate goal of this study was to assess whether SWAT can provide reliable 

groundwater recharge and nutrient leaching fluxes to MODFLOW, while also producing 

accurate crop yields for subsequent economic-environmental tradeoff analyses. While 

other field-scale agricultural models (e.g., DSSAT [Jones et al., 2003]; HYDRUS 1-D 

[Simunek et al., 2008]; Leaching Estimation and Chemistry Model [Hutson and 

Wagenet, 1992]; and Root Zone Water Quality Model [RZWQM, USDA-ARS, 1990]) 

may be more biophysically rigorous than SWAT, none of these models are integrated 

with hydrologic models that can simulate the complex watershed-scale surface water-

groundwater interactions that are important in the study area.   

The overall goal of this study was to use SWAT to simulate the long-term 

response of crop yield, crop N uptake, irrigation requirements, and NO3-N leaching 

under different irrigation, N fertilization, and cover crop management practices for a 

corn-peanut rotation, the most common row crop rotation in the SRB (USDA 2012). 

Specific objectives were to: (1) calibrate SWAT using observations from a three-year 

irrigation and N fertilizer rate management experiment for a corn-peanut rotation 

conducted in Live Oak, Florida (Zamora et al., 2018, 2020); (2) evaluate the long-term 

effects of the experimental irrigation and fertilization treatments on annual yield, N 
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uptake, irrigation applied, and NO3-N leaching using calibrated parameters over a 39-

year (1980-2018) historic weather record; and (3) estimate the effect of planting a rye 

cover crop on NO3-N leaching, irrigation water use, and yield in corn-peanut rotations. 

Future studies will aggregate these practices to the watershed scale to determine the 

ability of changes in agricultural management practices to achieve the NO3-N loading 

reductions required to meet the federally mandated NNC in the SRB. This work 

provides a framework for developing effective, socially acceptable strategies for 

achieving stringent water quality regulations while maintaining a robust agricultural 

economy that is transferrable to other agricultural watersheds throughout the world.  

Materials and Methods 

Study Area and Experimental Design 

     The experimental field site is located at the North Florida Research and 

Education Center – Suwannee Valley (NFREC-SV), near Live Oak, Florida (30.31 N, -

82.90 W, Figure 2-1). The field is at an elevation of 49-50 m above mean sea level and 

has flat topography with an average slope of less than 0.5%. The site consists of three 

types of well-drained soil: Chipley, Hurricane and Blanton sand (SSURGO (Soil Survey 

Geographic database), NRCS 2016). Soils in the southern portion of the site are mostly 

Chipley, while those in the northern portion are mostly Hurricane (Figure 2-1). The site 

was divided into two systems based on the timing of rotation. System 1 (southern 

portion of the site) was a corn-peanut-corn rotation planted during 2015-17, and System 

2 (northern portion) was a peanut-corn-peanut rotation grown during the same period. In 

this manuscript results and analysis from System 1 are presented in detail; results from 

System 2 were very similar and are thus summarized in the body of the paper and fully 

documented in the Appendix. 
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Systems 1 and 2 were divided into four blocks (i.e., replicates B1-B4), each 

containing fifteen 12.2 m x 6.1 m (74.4 m2) plots (Figure 2-1). Each plot received a 

different irrigation management strategy (n=5) and N fertilizer rate (n=3) resulting in 15 

treatments, each with 4 replicates. In this study, the subset of these plots that had most 

field observations were selected to develop the model. This subset included 9 

treatments (3 irrigation methods and 3 fertilizer rates; Table 2-1). Complete 

documentation of the field experiment can be found in Zamora et al., (2018).    

The three irrigation methods consisted of calendar-based irrigation, soil moisture 

sensor-based irrigation and no irrigation (rainfed). Calendar-based irrigation for corn 

consisted of no irrigation for the first 30 days after planting (DAP), unless severely windy 

conditions caused blowing sand to burn the plants. Beginning on 31 DAP, a target 

amount of 25 mm/week was established that could be made up of rain or irrigation, if 

rain events were > 13 mm. For 40-59 DAP, a 41 mm/week target was established. One 

irrigation event was skipped if 13-20 mm rainfall occurred, and two irrigation events 

were skipped if >20 mm of rain occurred. For 60-105 DAP a 61mm/week irrigation 

target was used. One irrigation event was skipped if 13-25 mm of rain occurred the day 

prior to a scheduled irrigation, and two irrigation events were skipped if >25 mm of rain 

occurred. Finally, around 105 DAP at full dent stage, weekly irrigation targets were 

reduced to 41 mm/week for one week and 20 mm/week for another week until finally 

irrigation was terminated at 115 DAP. Individual irrigation events were 13 mm. 

 A similar calendar-based irrigation schedule was applied during the peanut 

growing season. This consisted of no irrigation from 0 to 30 DAP; from 31 to 44 DAP 25 

mm/wk was applied unless rainfall provided target irrigation amount; from 45 to 64 DAP 
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38 mm/wk was applied, however if rainfall between 13 to 19 mm occurred one irrigation 

event was skipped and if rainfall >19 mm occurred two events were skipped. Finally, 

from 65 to 135 DAP 51 mm/wk was applied, one irrigation event was skipped if 13 to 25 

mm of rain occurred, and two irrigation events were skipped if >25 mm of rain occurred. 

Individual irrigation events were 10 mm. 

For the soil moisture sensor (SMS)-based irrigation scheduling, the volumetric 

soil water content (VWC) was monitored continuously using sensors. Irrigation was 

triggered when the maximum allowable depletion (MAD) was 50% of the difference 

between field capacity (FC) and permanent wilting point (PWP). The irrigation volume 

required to refill the active root depth to field capacity was estimated according to 

guidelines proposed by Zotarelli et al., (2013). Active root depth was varied throughout 

the season based on root development. 

The three N fertilizer treatments consisted of high, medium, and low application 

rates (336, 246 and 157 kg N/ha for corn, respectively). The high fertilizer application 

rate of 336 kg N/ha for corn and 17 kg N/ha peanut, is a common grower practice in the 

region (Zamora et al., 2018). The medium rate closely follows the University of Florida 

Institute for Food and Agricultural Sciences (UF-IFAS) recommendations (235 kg N /ha 

for irrigated corn and 0 kg/ha for peanut; Hochmuth et al., 1992; Mylavarapu et al., 

2015). The low N represents the minimum N required to establish the corn crop in the 

low water holding capacity, low organic matter, and low cation exchange capacity sandy 

soils at the field site. For corn an extra application of up to 17 kg N /ha was made within 

the first four weeks after planting if 76 to 100 mm of rainfall occurred in a week (FDACS 
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2015).  The fertilizer composition and application schedule are presented in Appendix 

Table A-1. 

Data Collection and Processing 

Table A-2 in Appendix summarizes the type, location and frequency of data 

collected from each plot. Soil moisture content was obtained from Sentek drill and drop 

capacitance probes (Sentek Pty Ltd 2003) installed in three replicates (blocks 2, 3 and 

4) in each of the nine treatments (Figure 2-1). Each probe consists of nine sensors 

placed every 100 mm interval up to 900 mm. Probes recorded data every 30 min, which 

were averaged to daily values of soil moisture storage for comparison with SWAT daily 

output. The Sentek probes were calibrated at the factory.  After installation at the field 

site the Sentek soil moisture measurements were checked against observed volumetric 

water content (estimated using gravimetric water content measured from soil cores 

within the same replicate and bulk density measured at the field site) to verify the 

factory calibration and establish their reliability for use in model calibration and 

validation. Soil Nitrate-N was collected from all plots at four depths (0-150, 150-300, 

300-600 and 600-900 mm) throughout the rotation. Aboveground biomass and nitrogen 

uptake were collected at key growth stages from all plots under SMS-based irrigation. 

Detailed information about the data collection procedures is provided in Zamora et. al., 

(2018). Soil properties measured at the site are summarized in Appendix Table A-3.  

Model Description  

SWAT is a semi-distributed, continuous, process-based watershed-scale model 

used to evaluate the impact of different land management practices on surface and 

subsurface water quality and quantity, sediment, and agricultural yields (Arnold et at., 

1998; Neitsch et al., 2004; Gassman et al., 2014). For spatial representation, SWAT 



 

30 

delineates a watershed into hydrological response units (HRUs), which are 

homogenous regions with similar slope, land use and soil type (Neitsch et al., 2011; 

Winchell et al., 2012). HRUs can be used for field or plot-level estimation of nitrate 

leaching, crop yield, evapotranspiration, and other management practice assessments 

(Neitsch et al., 2004; Anand et al., 2007; Gitau et al., 2008; Sinnathamby et al., 2017; 

Moloney et al.,2015; Cibin et al., 2017; Karki et al., 2019).  

SWAT has two infiltration schemes: The Curve Number (CN) method at daily 

intervals and the Green-Ampt method when hourly precipitation data are available; CN-

based infiltration was used in this study. SWAT simulates the movement of infiltrated 

flow between soil layers using a storage routing (tipping bucket) method, which allows 

downward movement or percolation of saturated flow when field capacity of a soil layer 

is exceeded and the underlying layer is not saturated (Arnold et al., 2004; Mapfumo et 

al., 2004). Soil moisture distribution below field capacity is governed by plant water 

uptake and soil water evaporation through two parameters, the soil evaporation 

compensation coefficient (ESCO) and the plant uptake compensation factor (EPCO), 

respectively (Vazquez-Amabile and Engel, 2005; Neitsch et al., 2011). The crop growth 

algorithm in SWAT is based on the Environmental Impact Policy Climate (EPIC) crop 

growth model (Williams et.al., 1989; Neitsch et.al., 2004). SWAT calculates the potential 

growth of the plant for each day as a function of solar radiation and leaf area index 

(LAI). Actual growth and LAI are dependent on stress factors including water, 

temperature, and nutrient stress. SWAT computes the accumulation of heat units until 

the crop attains maturity, after which crop growth ceases (Nair et al., 2011).  
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 Model Setup 

In this study, SWAT (version 2012/Rev664) was applied at the plot scale for the 

calibration and validation of soil and crop parameters following the approaches of 

Annand et al., (2007); Maski et al., (2008); Marek et al., (2016,2017) and Chen et al., 

(2017). The experimental area (Figure 2-1) was auto delineated into one basin with 

three HRUs (one per irrigation treatment) using the USGS 30 m DEM (Digital Elevation 

Map), USDA NRCS SSURGO soil map and USDA NASS Cropland Data Layer (CDL). 

These HRUs were converted to plots of equal size (74.4 m2) by adjusting the area in the 

sub basin input file and the fraction of area of HRU in the HRU input file (Marek et al., 

2016; Moloney et al., 2015; Karki et al., 2019). Each HRU was provided with information 

regarding management practices conducted in the experimental study period (e.g., 

planting date, irrigation and fertilizer schedules and harvest date). The default SSURGO 

soil data of soil bulk density, soil texture and organic carbon (%) were replaced with field 

measurements (Zamora et al., 2018) for each HRU (AppendixTable A-3). The total root 

zone depth in each HRU was set to 900 mm, with four layers (0-150 mm, 150-300 mm, 

300-600 mm, and 600-900 mm) for consistency with measured soil nitrate depth 

resolution.  

The source of irrigation water at the experimental site is the Upper Floridian 

Aquifer, which is approximately 3 m below land surface (USGS, 1983), with no 

interaction with the root zone. Surface runoff was never observed during the experiment 

at this well-drained site (Zamora et al., 2018). Thus, the irrigation source was set to an 

unlimited source outside of the field scale model domain. SWAT daily weather data (i.e., 

rainfall, temperature, solar radiation, relative humidity, and wind speed) required for the 

Penman-Monteith evapotranspiration module were obtained from the Live Oak Florida 
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Automated Weather Network (FAWN) located at the experimental site (30.305 lat, -

82.898 long, https://fawn.ifas.ufl.edu/). Missing data were filled using the SWAT weather 

generator (Neitsch et al., 2011).  

Calibration Methodology 

Crop growth simulation depends on both crop biophysical processes as well as 

soil moisture dynamics, so model calibration and validation followed an integrated 

approach to predict both processes reasonably (Wang et al., 2016; Sinnathamby et al., 

2017; Yang et al., 2017). The data used for calibration versus validation is summarized 

in Table 2-3. The calibration procedure is detailed below.  

Soil moisture was the first variable to be calibrated with default SWAT crop 

parameters. The Sequential Uncertainty Fitting (SUFI-2) algorithm in SWAT Calibration 

and Uncertainty Procedures (SWAT-CUP 2012) was used to calibrate and validate the 

model and the Nash-Sutcliffe model efficiency (NSE) was chosen as the objective 

function (Abbaspour et al., 2018). The SUFI-2 algorithm has been extensively used in 

the calibration of the SWAT model due to its easy implementation, high flexibility in 

selecting parameters and the range for calibration, and the reduced number of model 

runs needed to achieve good prediction (Yang et al., 2008; Malago et al., 2015). For this 

study, the methodology recommended in the SWAT-CUP user manual (Abbaspour 

(2013) and several SWAT-CUP calibration papers (Yang et al., 2008; Abbaspour et al., 

2015; Kamali et al., 2017; Abbaspour et al., 2018) were followed.  

The initial range of soil parameters were selected based on literature values 

(Arnold et al., 2012) and prior experiments conducted on similar soils in the region 

(Zotarelli et al., 2007; Prasad et al., 2015). Sensitivity analysis was carried out within 

SWAT-CUP to determine sensitive parameters to be included in the calibration. Sentek 
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soil moisture sensor data was used to calibrate total soil moisture storage in the entire 

root zone (900 mm) at the daily scale during the cropping season because currently 

SWAT-CUP has no provision to calibrate the soil moisture storage for individual soil 

layers. SWAT provides a simulated soil moisture only for the whole soil column (output 

file) which is utilized by SWAT-CUP for the auto-calibration process.    

Soil and hydrological parameters were calibrated using daily soil moisture 

storage (total soil moisture from 0 to 900mm) averaged across replicates for each high 

N irrigation treatment (i.e., Calendar, SMS and Rain fed) from 2015 to 2017 (Figure 2-

1), after a three-year warm up period to stabilize the initial hydrological condition. The 

three high N irrigation treatments were selected for calibration to account for spatial 

variability in soil properties across a variety of moisture regimes under the assumption 

of plant growth under no N stress. The calibrated soil parameters were then validated 

for each irrigation treatment in the medium and low N fertilizer treatments. The three 

calibrated HRUs with the high N management schedule were replaced with the medium 

and the low N fertilizer schedule for validation.  

After best-fit soil and hydrological parameters were identified, crop parameters 

were calibrated using the above ground biomass data averaged across replicates of the 

SMS high N treatments (note that biomass was measured at key growth stages only for 

SMS treatments (AppendixTable A-2)). Sensitivity analysis of seasonal biomass growth 

to SWAT crop parameters was conducted to determine the most sensitive parameters, 

after which the sensitive parameters were adjusted to reproduce the observed trend of 

crop growth in the high N fertilizer SMS treatment. Calibrated parameter values were 

validated using data from the low- and medium-N fertility SMS treatments. The 
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calibrated soil moisture parameters were further verified by re-simulating with the final 

crop parameters. 

Field-measured harvest indices (i.e., average fraction of final biomass removed 

from the field across the treatment replicates) for the SMS and Calendar High N 

treatments were used to estimate yield for both corn and peanut, assuming yields were 

optimum (without any water and nutrient stress (Neitsch et al., 2004)) for those 

treatments. The default SWAT nitrogen uptake parameters, PLTNFR-1 (N uptake at 

emergence), PLTNFR-2 (N uptake at 50% maturity), and PLTNFR-3 (N uptake at full 

maturity), and default Nitrogen transformation parameters were used in all simulations. 

The adequacy of these parameters in simulating the N balance for the experiment was 

assessed by comparing measured and predicted N uptake by the crop and NO3-N soil 

concentrations soil over time for each treatment. System 1 calibrated crop parameters 

were also validated using system 2 data. 

For all comparisons, statistical indices such as Nash Sutcliffe efficiency (NSE), 

Root Mean Squared Error (RMSE) and percent bias (PBIAS) were used. NSE and 

RMSE were estimated accounting for replicate measurement variability (Harmel et al., 

2007; Harmel et al., 2010) using the software “FITVAL” 

(https://abe.ufl.edu/faculty/carpena/software/FITEVAL) developed by Ritter and Muñoz-

Carpena, 2013. These modified statistical indices are denoted here as NSEM, and 

RMSEM. PBIAS was estimated without measurement variability (Moriasi et al., 2012). 

The performance indices were judged based on the criteria of satisfactory (NSEM>0.50) 

to very good (NSEM >0.75) set by Moriasi et al., (2007, 2012). 

https://abe.ufl.edu/faculty/carpena/software/FITEVAL.shtml
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Development of Long-term Scenarios  

In order to estimate irrigation requirements, nitrate leaching and crop yield over 

the wider range of historical weather conditions, the corn-peanut rotation was simulated 

for the nine experimental treatments using 39 years of North American Land Data 

Assimilation System (NLDAS) historical weather data (1980 to 2018, using 1980 and 

1981 as warmup period). In addition, scenarios were developed to estimate the 

potential reduction in nitrate leaching if a rye winter cover crop were planted instead of 

letting the land remain fallow between two subsequent crops. SWAT default parameters 

of rye crop was used for long term scenario. While many studies have shown that winter 

cover crops have benefits such as preventing soil erosion, improving long term soil 

quality, and enhancing carbon sequestration (Basche et al., 2016; Kaspar and Singer, 

2011; Moore et al., 2014), the impact of cover crops on reducing nitrate leaching has 

not been fully established (Martinez-Feria et al., 2016; Dabney et al., 2010; Thorup-

Kristensen et al., 2010).  

 A calendar irrigation schedule was developed from the historic rainfall data 

following an approach suggested by University of Florida Extension Specialists 

(Appendix Table A-4). Sensor-based irrigation was simulated with the SWAT auto 

irrigation option based on plant water demand, which triggers irrigation when the ratio of 

actual transpiration to potential transpiration becomes less than the user-defined 

threshold (Arnold et al., 2013). After multiple simulation trials and comparison with the 

experimental soil moisture scheduling irrigation amounts, and recommendations from 

stakeholders, a 0.65 threshold was used for both corn and peanut with an irrigation 

application of 12.7 mm/day for corn and 10.16 mm/day for peanut. 



 

36 

Split application of the three N fertilizer rates used in the field experiment (Table 

2-1, Appendix Figure A-1) were applied using ammonium nitrate fertilizer as it is a 

common source of N fertilizer in the region.  For simplicity, fixed planting and harvesting 

dates were adopted throughout the simulation period (Table 2-2). Based on local 

practices and communication with Extension Specialists, a rye cover crop planting and 

herbicide application schedule was incorporated into the simulations. The agricultural 

management schedule for the corn and peanut rotation with and without the cover crop 

is presented in Table 2-2.  

Results and Discussion 

Model Calibration and Validation 

Table 2-3 presents final calibrated values, ranges, and p-values to indicate the 

sensitivity of parameters (p<0.05 indicates a sensitive parameter). Available water 

content (AWC), Soil Evaporation Compensation Factor (ESCO) and Plant Uptake 

Compensation Factor (EPCO) were the most sensitive soil and hydrological 

parameters. Notably, saturated hydraulic conductivity and curve number were not 

sensitive parameters. Best-fit parameters were similar, though not identical, between 

systems (Table 2-4). 

Total heat units required to reach maturity (HEAT_UNITS) (in this experiment 

maturity for corn was 135 days after planting) and biomass-to-energy ratio (BIO_E) 

were the sensitive crop parameters, which is in accordance with previous studies 

(Faramarzi et al., 2009; Kiniry et al., 2002; Abbaspour et al., 2015; Almeida et al., 2017). 

Maximum potential leaf area index (BLAI) for corn and peanut were assigned to be 3 

and 4 respectively, as specified in the SWAT database (Kiniry et al., 2002; Almeida et 

al., 2017). The final ranges of BIO_E for corn and peanut were close to ranges included 
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in the SWAT manual (BIO_E corn: 39-45 and BIO_E peanut: 20-25). The calibrated 

HEAT_UNITS value for peanut (1800) was close to that for Georgia green peanut 

variety (1900) estimated from previous experiments (Bennett et.al., 1993; Kiniry et.al., 

2005). The optimal harvest index parameter (HVSTI) was set to the measured harvest 

index (the average quantity of biomass removed from field as yield) for the SMS and 

Calendar High N treatments, which was 0.60 for corn and 0.55 for peanut. The 

minimum harvest index parameter (WSYF) was kept at the default value of 0.3 for both 

corn and peanut.  

 Soil Moisture Storage 

Figure 2-2 shows modeled and observed soil moisture storage for the three 

treatments used for calibration (SMS, Calendar and Rain fed irrigation, all under high N 

fertilization). The range of the observed measurements represents the spatial variability 

of soil moisture across replicates for each treatment. Soil moisture validation for the 

remaining six treatments (SMS, Calendar and Rain fed irrigation under medium and low 

N fertilization) for System 1 are shown in Appendix Figure. A-1 and A-2. Plots of 

modeled versus observed soil moisture for System 2 are presented in Appendix Figure 

A-6 to A-8.   

Overall, soil moisture predictions showed satisfactory to very good fits (0.67< 

NSEM <0.97) in both calibration and validation treatments for both systems (Table 2-5). 

However, observed soil moisture peaks during high rainfall events were under-predicted 

in System 1 Calendar and SMS treatments across all fertilization rates. These results 

indicate that, although SWAT was able to capture general patterns of soil moisture 

variation across the three growing seasons for both systems, soil water drained too 

rapidly when soil moisture was above field capacity. Discrepancies between simulated 
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and observed soil moisture, particularly during high rainfall events, due to simplified 

runoff and percolation process in SWAT were also reported by Rajiv et al., (2016), Yang 

et al., (2017), and Zhang et al., (2017). SWAT has a simplified approach for estimating 

soil moisture percolation that assumes soil water above field capacity in a particular 

layer percolates to the next layer at a rate governed by the saturated hydraulic 

conductivity (Neitsch et al., 2011).   

Due to this SWAT model structure and its high sensitivity to available water 

content and low sensitivity to hydraulic conductivity (Table 2-4), the calibrated soil 

parameters were unable to reproduce some of the transient soil moisture peaks 

measured by the Sentek probes during large (particularly multi-day) rainfall events 

(Figure 2-2). However, manually increasing available water content and lowering 

hydraulic conductivity of the soil from the calibrated parameters to try to match the 

peaks resulted in long periods of time where the soil moisture remained much higher 

than the observations, deteriorating the overall model fit statistics significantly. In the 

sandy soils at the experimental site (and throughout much of the SRB region), the 

transient high soil moisture drains back to field capacity more slowly than SWAT 

predicts, but typically within a few days, causing this excess water (and any nitrate it 

contains) to eventually leach past the root zone. The fact that nitrogen uptake and 

biomass accumulation by the crop as well as soil nitrate storage were adequately 

predicted by the model (described in following sections) provides some reassurance 

that the transient inaccuracies around large-rainfall events do not affect the seasonal 

water and nitrogen mass balances.  
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With the calibrated Soil Conservation Service Curve Number (SCS-CN), the total 

overland runoff volume generated for the highest runoff generating treatment (calendar 

based irrigation with high N) was 0.77% of applied water (precipitation plus irrigation), 

compared to 54% for ET and 46% for percolation below the root zone, generally in 

conformance with the observation of no surface runoff at the field site. The small 

amount of runoff generated by SWAT occurred during large events such as Hurricane 

Irma in September 2017. 

 Crop Biomass and Yield 

Crop growth dynamics for corn and peanut were very well predicted (NSEM> 

0.95) for the SMS irrigation treatments across both calibrated (high-N) and validated 

(medium- and low-N) fertilizer rates in System 1 (Table 2-6, Figure 2-3). Validation 

results for yield for all treatments in System 1 (Figure 2-4) were generally consistent 

with measured values (all NSEM>0.75); however, in 2017 the model over-predicted both 

total aboveground biomass and yield for rainfed corn under all fertilization rates. This 

may indicate that water stress is under-predicted by the SWAT crop parameters that 

were calibrated using SMS-high N treatments. Validation results for crop growth 

dynamics for System 2 also showed very good results for 2015 peanut and 2016 corn 

(0.86<NSEM<0.99; Table 2-6, Appendix Figure A-9), but total aboveground biomass and 

yields were not well predicted for any peanut treatments in 2017 (Appendix Figure A-

10). Low observed peanut biomass and yield in 2017 were associated with crop loss 

caused by Hurricane Irma that hit the region in September 2017. These effects were not 

captured in SWAT simulations that were calibrated under limited stress conditions 

(Mittelstet et al., 2015).   
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 Crop Nitrogen Uptake 

Modeled N uptake dynamics followed the observed trends well for System 1 

SMS treatments using default nitrogen uptake parameters (Figure 2-5 and Table 2-7). 

While observed total nitrogen uptake had high variability within treatments (last column 

Figure 2-4), System 1 total N uptake predictions reproduced mean observed values 

quite well (NSEM 0.48 - 0.96, PBIAS -0.1-9.7%; Figure 2-4). Note that although there 

was no difference in N applied to the System 1 peanut treatments in 2016 both the 

observed and simulated peanut nitrogen uptake in 2016 were influenced by different 

irrigation treatments, primarily because irrigation treatments affected biomass 

production, hence affecting crop demand for N. 

Modeled N uptake dynamics followed well the observed trends for System 2 

SMS treatments in 2015 and 2016, but N uptake for peanut was significantly 

overpredicted in 2017. This was a result of overprediction of biomass and yield since 

SWAT was not able to correctly predict the crop loss that occurred as a result of 

Hurricane Irma in 2017 (Appendix Figure A-11 and Table 2-7). For System 2, total N 

uptake for corn was adequately predicted (NSEM 0.63, PBAIS -8.8%); however, for 

peanut (N fixation plus N uptake from soil) was slightly underpredicted in 2015 (NSEM -

9.23, PBIAS 25%) and overpredicted in 2017 (NSEM -11.44, PBIAS -89.7%) (Appendix 

Figure A-12).   

Overall, SWAT predictions of final biomass, N uptake and yield for both systems 

agreed with the Zamora et al., (2018, 2020) experimental results in which the calendar-

based and SMS irrigation management practices produced statistically higher final 

biomass, N uptake and yield than the rainfed practices. Zamora et al., (2018) found no 

statistically significant differences in final corn biomass across N rates, but differences 
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in total N uptake were found between the low and the high N rates. SWAT predicted 

both lower biomass and N uptake for the low N fertilizer rate.   

Soil Nitrate-N 

Time series of System 1 simulated and measured soil nitrate-N in the entire root 

zone (0-900 mm) for Calendar, SMS and Rainfed irrigation with high N treatments are 

shown in Figure 2-6. The remainder of the System 1 treatments are shown in Appendix 

Figure A-3 and A-4, and similar results for System 2 are shown in Appendix Figure A-13 

– A-15. For both systems, soil nitrate-N simulated using default soil nitrate parameters 

followed the trend of the observed data with NSEM values ranging from 0.55 

(satisfactory) to 0.95 (very good) for all treatments except the rainfed high fertilizer 

treatment. The Rainfed high fertilizer treatment over-predicted soil nitrate-N for both 

Systems, primarily during the fallow season following corn production (NSEM 0.16 and 

0.25, respectively; Table 2-8). As mentioned earlier, SWAT overestimated the corn 

biomass and N uptake for the rainfed case, most likely because the SWAT corn 

parameters used for calibration had no water or N stress (i.e., SMS-high treatment). The 

erroneously low corn N uptake may have led to the erroneously high soil N in the fallow 

periods due to mineralization of plant residues after harvest, in part because water 

deficit reduces harvest index, thus leaving more non-grain residue with higher N content 

for later mineralization.  

Nitrate-N Leaching 

Based on satisfactory to very good prediction of simulated crop N uptake and soil 

nitrate-N storage (the only measured components of N balance in this study), simulated 

nitrate-N leaching was compared across treatments for the corn-peanut-corn rotation 

including the fallow periods between cropping seasons (System 1, Figure 2-7). As 
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expected, the high N fertilizer practice (336 kg N/ha) caused more nitrate-N leaching to 

groundwater than the medium and low fertilizer practices (246 and 157 kg N/ha) in all 

irrigation management systems. Similarly, the medium N rate caused more nitrate 

leaching to groundwater than the low fertilization practice. Interstingly, more nitrate 

leaching occurred during the fallow periods between crops than during the crop growing 

seasons across treatments. 

Within the high N fertilizer practice, calendar irrigation caused more nitrate 

leaching to groundwater than SMS and rainfed practices during the 2015 corn growing 

season (Figure 2-7). However, the highest nitrate leaching occurred during the 2015-16 

fallow period after the 2015 rainfed-high corn. Across all treatments the corn and peanut 

biomass left in the field after harvest (40 and 45%, respectively) apparently decayed 

and mineralized to N that contributed to nitrate-N leaching ranging from 15 to 70 kg 

N/ha and from 10 to 20 kg N /ha during the 2015-16 and 2016-17 fallow periods, 

respectively. Compared to 2015, corn grown in 2017 exhibited more leaching due to 

extreme weather conditions and the extra 17 kg/ha of N fertilizer that was added to 

compensate the loss of N due to leaching rain. Results show a ~40% (70 kg N/ha) 

reduction in nitrate leaching for the SMS-medium fertilizer treatment compared to the 

calendar irrigation and high N fertilizer practices that are common in the region. 

Long-term Simulation Results 

Crop Yield  

The long-term simulations (1980-2018) showed no significant difference in 

average crop yields for the high and medium N fertilizer treatments when using 

Calendar or SMS irrigation scheduling methods. The rainfed and low fertility treatments 

showed statistically lower average yields (Figure 2-8). These results are consistent with 
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the field experiment results reported by Zamora et al., (2018). The incorporation of rye 

as a cover crop did not show any statistically significant effect on average corn yield for 

the high and medium N treatments. However, the Calendar and SMS low fertility corn 

treatments showed an average of 12% and 9% increase in corn yield following cover 

crops, respectively. For these low fertilizer treatments, the incorporation and 

mineralization of cover crop biomass provided additional nutrients beneficial for corn 

production (Krueger et al., 2011). Similar field results were reported by Zotarelli et al., 

(2009) where at lowest supplemental N rates, cover crops added benefits to sweet corn 

yields in Florida, USA. No statistically significant effects of cover crops on average 

peanut yields were observed. The wide variation in predicted rainfed corn and peanut 

yields across all N fertility rates represents variations in water stress due to variations in 

annual rainfall. 

Nitrate-N Leaching 

Figure 2-9 shows long term leaching simulated over the crop rotation including 

fallow and cover crops between growing seasons (corn – fallow/cover crop – peanut – 

fallow/cover crop). As expected, high N fertilization rates resulted in more nitrate-N 

leaching than medium fertilization rates, which in turn resulted in greater leaching than 

low fertilization rates. Long-term simulations showed that SMS irrigation resulted in 

statistically significant less leaching than calendar irrigation across all fertilization rates. 

Furthermore, introducing cover crops during the fallow periods reduced nitrate-N 

leaching by a statistically significant average of approximately 50 kg N/ha across all 

treatments. The calendar-based irrigation with high fertilizer and no cover crop practice 

resulted in ~65% more leaching (~120 kg N/ ha) in comparison to the SMS-based 

irrigation with medium fertilizer and cover crop practice. Moreover, the extra 100 kg/ha 
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fertilizer and 45% more irrigation water applied by this common practice did not provide 

any statistically difference in average corn or peanut yields (Figure 2-8). Long-term 

irrigation applied by the Calendar treatment averaged 506 and 309 mm during corn and 

peanut, respectively, whereas the SMS treatment (using auto-irrigation) applied an 

average of 290 and 160 mm, respectively. Thus, average irrigation reductions of 43% 

and 48% were achieved by using a sensor-based instead of calendar-based irrigation 

scheduling method in corn and peanut production, respectively. 

Further analysis of N leaching patterns showed that on average the calendar-

based irrigation with high N fertilizer practice resulted in an average of ~100 kg N /ha 

leaching within the corn growing season followed by an average of ~50 kg N /ha during 

the subsequent fallow season. In contrast, the rainfed – high N fertilizer practice 

resulted in an average of ~34 kg N/ha leaching during the corn season and an average 

of ~100 kg N /ha leaching during the subsequent fallow period (Appendix Figure A-5). 

For the rainfed corn, the fertilizer not taken up by the crop during the growing season 

along with the N mineralization from corn residue resulted in more leaching during the 

fallow period than either the calendar or SMS irrigation practices.  Nitrogen leaching 

from peanut residue (average of ~ 50 kg/ha across all management practices) was 

significantly reduced (~80%) by planting rye as a cover crop compared to leaving the 

fields fallow between cropping seasons (Appendix Figure A-5).  

Conclusions 

Providing quantitative support for the efficacy and economic feasibility of 

agricultural best management practices is becoming more and more critical as 

communities around the globe seek to balance agricultural production and 

environmental protection. Coupling robust field experiments of specific management 
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practices with modeling approaches that allow inference to be drawn at larger 

spatiotemporal scales is particularly useful for exploring tradeoffs among alternative 

future scenarios and comparing results to regulatory requirements and the preferences 

of diverse stakeholders. In this study, it is shown that SWAT successfully estimated soil 

moisture, crop biomass, yield, crop N uptake and soil nitrate for corn-peanut rotations 

grown using a variety of irrigation and N fertilizer management practices in the 

Suwannee River Basin, Florida. Leveraging robust field measurements from a 3-year 

field study (Zamora et al., 2018, 2020) allowed us to predict likely long-term changes in 

crop yields, water use, and N leaching over a range of historical conditions. By 

expanding experimental results beyond the temporal limits of specific field seasons, 

these model results provide more widely applicable guidance for reductions in nutrient 

loads that can be expected from BMP implementation.   

Specifically, we found that improving irrigation scheduling practices, reducing N 

fertilization rates and planting a cover crop during fallow periods have the potential to 

reduce NO3-N leaching by ~65% over current commonly used corn-peanut rotation 

practices. Notably, this is within the 65% reduction in NO3-N load that is estimated to be 

needed to achieve the NNC in spring ecosystems (FDEP, 2012, 2018). Furthermore, 

our results indicate that these load reductions can be achieved without adversely 

affecting crop yield. This suggests that an incentive program that cost-shares equipment 

purchases and protects producers from the risk of yield reductions may be an effective 

way to overcome barriers to the widespread adoption of SMS irrigation scheduling, 

reduced N fertilization rates and cover cropping practices in the region. Building from 

these results, we are currently engaging stakeholders to develop alternative land use-
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land management scenarios at the watershed scale. These scenarios will be used to 

drive a SWAT-MODFLOW model to evaluate tradeoffs among the regional agricultural 

economy, surface water and groundwater quantity, and stream/aquifer water quality, 

and to determine whether improved management practices alone can achieve the NNC. 

Overall, the results of this study and our ongoing efforts provide a transferable 

framework for developing effective and economically feasible strategies for meeting 

water quality regulations while maintaining agricultural landscapes and livelihoods.   
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Table 2-1. Irrigation and N fertilizer treatments for the nine treatments in Systems 1&2.  

                                                                       Corn 

Irrigation 
treatment 

Irrigation applied (mm)   N fertilizer rate 

2015 2016 20171   Rate 
 (kg 
N/ha) 

Calendar  330 490 546 

  High 336 

  Medium 246 

  Low 157 

 Soil 
Moisture 
Sensors 
(SMS)  

151 291 302 

  High 336 

  Medium 246 

  Low 157 

Rain fed  15 25 48 

  High 336 

  Medium 246 

  Low 157 

                                                       Peanut 

Calendar 132 555 368   

  

  

SMS 25 205 122   172 

Rain fed  0 30 20     
 

1 In 2017, due to leaching rainfall events occurring early in the season, an additional 17 
kg N/ha were applied to each corn N fertility rate. 
2No difference in N fertilizer rate for peanut. 
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Table 2-2. Irrigation and N fertilizer management schedule used to perform long-term 
simulations using historical weather data (1980-2018). 

  Baseline Scenario1 Cover Crop Scenario2   

  Corn Peanut Rye   

Planting 20-Mar 12-May 01-Oct   

Harvest 05-Aug 27-Sep 

Chemically kill cover 
crop one month before 
planting corn and 
peanut 3   

Irrigation 
Calendar Irrigation 
Schedule (Table 16)  

Calendar Irrigation 
Schedule (Table 16)  

None 
  

  
SWAT Auto irrigation 
(12.7 mm per event) 

SWAT Auto irrigation 
(10.16 mm per event)     

   Rain fed (No Irrigation)  Rain fed (No Irrigation)     

          

Fertilizer 
N Fertilization rates 
(low, med, high) 
schedule (Table 2). 

None None 
  

1 Baseline includes a fallow period between cropping seasons (i.e. corn-fallow-peanut-
fallow).   
2 Cover crop scenario includes rye instead of fallow periods between cropping seasons (i.e. 
corn-rye-peanut-rye). 
3Harvest and kill option 8 in SWAT, 100% biomass incorporated as residue   
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Table 2-3.  Summary of data used for calibration versus validation. 
 

Observation  Calibration Data Validation Data 

Soil moisture Calendar Irrigation – High N, 
2015-2017. SMS Irrigation – 
High N, 2015-2017. Rainfed 
– High N, 2015-2017.  

Calendar Irrigation – Med & 
Low N, 2015-2017.  
SMS Irrigation – Med & Low N, 
2015-2017.           
Rainfed – Med & Low N, 2015-
2017. 

Biomass dynamics SMS Irrigation – High N, 
2015-2017. 

SMS Irrigation – Med & Low N, 
2015-2017. 

Final biomass SMS Irrigation – High N, 
2015-2017. 

Calendar Irrigation – High, 
Med & Low N, 2015-2017. 
SMS Irrigation – Med & Low N, 
2015-2017.       
Rainfed – High, Med & Low N, 
2015-2017. 

Final Yield  Calendar Irrigation – High N, 
2015-2017. SMS Irrigation – 
High N, 2015-2017.   

Calendar Irrigation – Med & 
Low N, 2015-2017.  
SMS Irrigation – Med & Low N, 
2015-2017.           
Rainfed – High, Med & Low N, 
2015-2017. 

Crop N uptake None (default parameters 
used) 

Calendar Irrigation – High, Med 
& Low N, 2015-2017. SMS 
Irrigation – High, Med & Low N, 
2015-2017.       
Rainfed – High, Med & Low N, 
2015-2017. 

Soil N None (default parameters 
used) 

Calendar Irrigation – High, Med 
& Low N, 2015-2017. SMS 
Irrigation – High, Med & Low N, 
2015-2017.      
 Rainfed – High, Med & Low N, 
2015-2017. 
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Table 2- 4. Calibrated soil, hydrological and crop parameters including p-values for sensitivity and uncertainty range 

r = relative changes in parameter values, v = absolute changes in parameter values, * = absolute value used in the model, 
a = manual adjustment based on experiment and suggestion from stakeholders, 1, 2, 3 and 4 denote the four soil layers 0-
150, 150-300, 300-600 and 600-900mm.

   System 1 System 2 

Water Balance 

Parameters 
Definition Final Range  Used Value  P-Value Final Range  

Used 

Value  
P-Value 

r__CN2.mgt  SCS Curve Number -0.04 - 0.137 -0.03(40*) 0.18 -0.17 - 0.13 -0.06(40*) 0.34 

v__ESCO.hru Soil evaporation compensation factor  0.49  - 0.60 0.52 5.29x10-07  0.68  - 0.86 0.71 0.0003 

v__EPCO.hru Plant uptake compensation factor 0.15 - 0.26 0.21 0.01 0.15 - 0.26 0.16 9.04x10-41 

v__GW_DELAY.gw Groundwater delay, days 2 - 10 8.35 0.8 2 - 10 7.9 0.45 

v__SOL_AWC(1).sol  

Soil available water storage capacity 

0.07 - 0.12 0.09 7.08x10-9  0.06  - 0.12 0.09 2.21x10-43 

v__SOL_AWC(2).sol 0.07 - 0.13 0.08 9.37x10-60 0.030 - 0.10 0.05 5.13x10-83 

v__SOL_AWC(3).sol 0.07  -  0.10 0.08 7.65x10-14 0.10  -  0.15 0.12 4.19x10-29 

v__SOL_AWC(4).sol 0.13  -  0.16 0.16 2.20x10-34 0.14  -  0.16 0.15 8.9x10-20 

r__SOL_K(1).sol 

Saturated hydraulic conductivity 

(mm/hr) 

 0.010 -0.028 0.017(204*) 0.8 0.02   -   0.03 0.022 0.41 

r__SOL_K(2).sol -0.002 - 0.014 0.005(205*) 0.59 0.008 - 0.013 0.010 0.29 

r__SOL_K(3).sol    0.007  -  0.024 0.021(202*) 0.7 0.027  - 0.037 0.034 0.29 

r__SOL_K(4).sol   -0.014  -  0.008 0.007(198*) 0.78  -0.12  -  0.026 -0.047 0.59 

    Crop Parameters (Corn)   Crop Parameters (Peanut)   

BIO_E.plant.dat Biomass/Energy 39 - 48  46 6.9x10-7 20 -35 26 2.18x10-5 

HEAT_UNITS.mgt Total heat units for plant to mature 2000 - 2500 2400 0.03 1700- 2500 1800 2.63x10-23 

HVSTI 
Harvest Index for optimal growing 

condition 
 

60a 
  

55a     
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Table 2-5. Goodness-of-fit indicators (NSEM, PBIAS (%) and RMSEM (mm)) for 
calibration and validation of total soil moisture.  

 

                    System 1 System 2 
                        Calibration      Calibration  

  NSEM 
PBIAS 

(%) 
RMSEM     NSEM 

PBIAS 
(%) 

RMSEM 

SMS-High 0.88 -0.9 6.37   SMS-High 0.94 7 3.64 
Calendar-
High 

0.72 3.4 9.63   Calendar-High 0.84 0.8 5.86 

Rainfed-High 0.82 -7.7 8.76   Rainfed-High 0.92 5.3 4.71 

                         Validation     Validation  

SMS-Medium 0.82 -1 9.62   SMS-Medium 0.86 3.5 7.16 
Calendar-
Medium 

0.67 -1.7 12.43   
Calendar-
Medium 

0.96 2.2 3.43 

Rainfed-
Medium 

0.82 -12 8.15   
Rainfed-
Medium 

0.93 -1.8 6.33 

SMS-Low 0.69 -1.8 12.83   SMS-Low 0.77 5.6 7.87 
Calendar-
Low 

0.76 -0.9 9.39   Calendar-Low 0.89 1.6 5.58 

Rainfed-Low 0.83 -16.1 8.49   Rain fed-Low  0.97 -0.2 4.73  
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                     Table 2-6. Modified goodness-of-fit indicators for biomass trend with measurement uncertainty. 
 

  System 1 Biomass trend  

  Treatments Corn 2015 Peanut 2016 Corn 2017 

    
 

NSEM 
PBIAS 

(%) 
RMSEM 
(kg/ha)  

 
NSEM 

PBIAS 
(%) 

RMSEM 
(kg/ha) 

 
NSEM 

PBIAS 
 (%) 

RMSEM 
(kg/ha) 

Calibration SMS-High 0.99 14.1 820 0.99 -5.4 182 0.99 -4.2 733 

    

Validation SMS-Medium 0.99 17.2 709 0.99 -10.8 321 0.97 -4 1440 

  SMS-Low 0.99 11 472 0.99 -10.7 391 0.99 8.3 599 

  System 2 Biomass trend  

  Treatments Peanut 2015 Corn 2016 Peanut 2017 

  SMS-High 0.99 8.8 157 0.86 -35 3544 -1.34 -74.9 3884 

Validation SMS-Medium 0.96 5.3 1109 0.91 -31 2802 0.17 -60.6 3230 

  SMS-Low 0.99 6.3 0 0.93 -10.5 2362 -0.34 -69.4 3696 
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Table 2-7. Modified goodness-of-fit indicators for total aboveground N uptake trend with measurement uncertainty. PBIAS is in %. 
 

System 1 Nitrogen Uptake trend 

Treatments 

Corn 2015 Peanut 2016 Corn 2017 

NSEM PBIAS 
RMSE M
(kg/ha) 

NSEM PBIAS RMSE M(kg/ha) NSEM PBIAS 
RMSEM 

(kg/ha) 

SMS-High 0.99 -5 7 0.99 8.3 8 0.56 -42 58 
SMS-Medium 0.99 3.1 11 0.99 -4.7 14 0.89 -13.6 29 
SMS-Low 0.99 15.6 8 0.99 -3.8 4 0.97 8.7 12 

System 2 Nitrogen Uptake  trend 

Treatments  Peanut 2015                       Corn 2016    Peanut 2017 

SMS-High 0.97 17 25 0.74 -36.3 53 0.77 -41.4 43 
SMS-Medium 0.95 17.8 39 0.97 -2.1 18 0.95 -12.5 20 
SMS-Low 0.99 8.9 7 0.76 24.1 47 0.88 -17.1 29 
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Table 2-8. Modified goodness-of-fit indicators for simulated soil nitrate-N for both systems  
 

System 1 System 2 

  NSEM PBIAS (%) RMSEM(mg/kg) NSEM PBIAS (%) RMSEM(mg/kg)  

SMS-High 0.81 -6.1 4.8 0.58 -6.4 9.46 

Calendar-High 0.70 -16.7 4.2 0.80 -11.7 4.40 

Rainfed-High 0.16 -66.8 8.45 0.25 -18.4 12.73 

SMS-Medium 0.64  9.8 2.83 0.93 14 2.24 

Calendar-Medium 0.74  20.6 3.33 0.90 17.9 3.30 

Rain fed-Medium 0.76 -5.3 3.52 0.75 -1.9 6.56 

SMS-Low 0.55 35.6 2.79 0.79 37.9 4.51 

Calendar-Low 0.61 43.4 4.05 0.86 36.2 2.67 

Rainfed-Low 0.65 43.1 3.22 0.84 26.1 4.08 
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Figure 2-1. Site map showing layout of the experimental site with highlighted (blue, red, 
and purple) plots considered in this study.  
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Figure 2-2. Observed and simulated total soil moisture (mm) in root zone (900 mm) during corn-peanut-corn growing seasons. (A) 
SMS-High, (B) Calendar-High, and (C) Rain fed-High for System 1. Vertical error bars correspond to the standard 
deviation of measured data.
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Figure 2-3. Simulated (lines) vs observed (dots) aboveground biomass dynamics for     
calibrated SMS-High and validated SMS-Medium and SMS-Low for 
System1.The experimental variation shown is the minimum and maximum 
of the field measurements (error bars). 
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Figure 2-4. Simulated (dots) vs observed (boxplots) aboveground biomass, yield, and N uptake for corn 2015-peanut 2016-corn 

2017 for System 1. Model performance statistics evaluated were NSEM, PBIAS (%) and RMSEM (kg/ha).
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Figure 2-5. Simulated (line) vs observed (dots) N uptake during crop growing seasons 
for SMS-high, medium, and low in System 1. The experimental variation 
shown is the minimum and maximum of the field measurements (error 
bars).
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          Figure 2-6. Observed (dots) vs simulated (lines) soil nitrate-N in root zone (0-900 mm) for SMS, Calendar and Rain 
fed -High treatments for System 1. Red and green bars denote daily rainfall and fertilizer applications. 
Vertical error bars correspond to the standard deviation of measured data.
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Figure 2-7. Simulated nitrate-N leaching during complete crop rotation for System 1 
(corn 2015-peanut 2016-corn 2017) including intercropping bare fallow 
periods (2015-16 and 2016-17). 
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Figure 2-8. Long-term corn and peanut yield simulations with fallow (baseline) and 
with rye cover crop between cropping seasons across irrigation 
treatments (Calendar, SMS, and Rain fed) and N fertility rates (low, 
medium, and high). (A) Corn. (B) Peanut. Different letters indicate 
significant difference at α = 0.05 level. 

A 

B 
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Figure 2-9. Long-term simulated N leaching over the crop rotation with fallow and rye 
cover crop between cropping seasons (corn-fallow/rye-peanut-fallow/rye). 
Different letters indicate significant difference at α = 0.05 level. 
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CHAPTER 3 
IMPACT OF LAND USE AND LAND MANAGEMENT PRACTICES ON NITRATE 

LOADING TO GROUNDWATER IN SANTA FE RIVER BASIN  

Background 

Nitrate-nitrogen (NO3-N) loading to groundwater is a chronic problem worldwide 

(Akhavan et al., 2010) due to its detrimental effects on the ecological health of springs, 

streams, and lakes (Mitsch et al., 1999; Bowen et al., 2007), as well as on human health 

(De la Monte et al., 2009). Multiple point and non-point sources contribute NO3-N to 

groundwater, and agricultural land uses are recognized as a primary non-point source 

of groundwater NO3-N pollution (Humenik et al., 1987; Spalding and Exner, 1993; 

Bower, 2000; Van Drecht et al., 2003; Vitousek et al., 2010). Application of synthetic 

fertilizer and manure to irrigated agricultural crops increases crop yields, however it can 

also result in NO3-N leaching to aquifers, especially when applied in excess (Allaire-

leung et al., 2001; Harter et al., 2002; Burow et al., 2010; Dahan et al.,2014). The 

problem of NO3-N loading from non-point sources is particularly pronounced for karstic 

aquifers, which are characterized by discrete fractures conduits and carbonate rocks 

with high permeability and transmissivity (Vesper et al., 2001, Doerfliger et al., 1999).  

The Upper Floridan aquifer (UFA), one of the most productive karstic aquifers in 

the world, is a major source of public water supply and irrigation in north and central 

Florida (Bush and Johnson 1988). The Santa Fe River, a tributary of Suwanee River 

located in north central Florida, overlies the UFA. The Santa Fe River Basin (SFRB) 

spans a transition zone between confined and unconfined regions of the Floridan 

aquifer system (Hunn and Slack 1983; Upchurch et al., 2008; Srivastava et al., 2014). 

The unconfined karst region has numerous springs that feed the Santa Fe River, 

supporting an important ecological and economic resource (Borisova et al., 2014; 
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Rosneau et al., 1977). Over the past several decades, the degradation of spring water 

quality has become a serious environmental concern (Nolan and Stone, 2000; 

Kingsbury, 2008; Obeidat et al., 2008; Siliang et al., 2010), as NO3-N concentrations in 

UFA springs and rivers have increased from background concentrations of ≤0.1 mg/L 

NO3-N to above 5 mg/L NO3-N in some springs over the last 40 years (Katz et al., 1999; 

Katz, 2004). In response to increasing NO3-N concentrations and spring ecosystem 

degradation, a Numeric Nutrient Criteria (NNC) of 0.35 mg/L NO3-N as an annual 

geometric mean has been set by Florida Department of Environment Protection (FDEP) 

for groundwater emanating from UFA springs (62- 302.530 (47) (b), F.A.C.; FDEP, 

2013). Total Maximum Daily Loads (TMDLs; US Environmental Protection Agency, 

2016) estimated to achieve the NNC have been established for UFA springs, and Basin 

Management Action Plans (BMAPs) have been (or are being) established for 

waterbodies not meeting the NNC. Overall, NO3-N load reductions required to meet the 

NNC in Santa Fe River Basin range from 35% (FDEP, 2012) to 65% (FDEP, 2018). 

Agriculture and silviculture are the predominant land uses that overlie the UFA in 

north Florida and increasing NO3-N in surface and groundwater in the region has been 

attributed to agricultural land uses such as row crops, cow-calf operations, dairy, and 

poultry farms (FDEP, 2012; Marella, 2014; FDACS, 2015a; Harrington et al., 2010; 

Hochmuth et al., 2014). Isotope studies (Katz, 2004; Henson et al., 2019) have 

determined that synthetic fertilizer is the dominant NO3-N source in SFRB springs, 

indicating that changes in agricultural practices will be required to meet environmental 

standards. Land use and land management influence hydrological processes such as 

runoff, evapotranspiration, and groundwater recharge (Ghaffari et al., 2010; Parajuli et 
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al., 2013; Lin et al., 2015), as well as nutrient cycle processes such as crop N uptake, 

soil NO3-N storage, denitrification, and leaching (Costa et al, 2002; Bossa et al., 2012; 

Shrestha et al., 2018). Several studies of row crops, hay, and grazing pasture 

operations have been conducted at the field scale in the SFRB to quantify interactions 

among water and nutrient management, crop yields, water use, crop N uptake, and 

environmental N losses (Zamora-Re et al., 2018; Vendramini et al., 2006; Mylavarapu et 

al., 2016). Generally, these studies have found that targeted best management 

practices (BMPs) can reduce both irrigations applied, and NO3-N leached to 

groundwater relative to conventional methods (Zamora-Re et al., 2018; Rath et al., 

2020). However, developing improved land use and management practices that protect 

groundwater quantity and quality while maximizing agricultural production requires that 

these studies be scaled up to consider the temporal and spatial variability of NO3-N 

load, fate, and transport across the watershed. 

Accurate assessment of NO3-N load to groundwater from different land uses is a 

critical step in developing effective N control programs (Lindgren et al., 2007; Carpenter, 

2008; Eller et al., 2017). However, the spatial variation of soil and aquifer properties, 

topography, land use, and water and nutrient management practices add uncertainty to 

the estimation of NO3-N load and its subsequent fate and transport at the watershed 

scale (Shen et al., 2014, Liu et al., 2016). Previous field experiments and modeling 

studies have made efforts to precisely estimate the relative contribution of NO3-N load 

from various land uses to karst spring systems in Florida. Eller et al. (2017) developed 

“The Nitrogen Source Inventory and Loading Tool” (NSILT), a simple spreadsheet-

based tool that estimates NO3-N load from different point and non-point sources 

https://www.sciencedirect.com/science/article/pii/S0022169419310388#b0175
https://www.sciencedirect.com/science/article/pii/S0022169419310388#b0105
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considering N applied to the land surface and subsurface N attenuation. Application of 

NSILT to the SFRB indicated that inorganic fertilizer sources from agriculture land are 

the dominant NO3-N load to receiving waters. NSILT subsurface NO3-N attenuation 

through N uptake, denitrification and other gaseous losses were estimated from the 

literature to be approximately 50%-85% for row crops (Hochmuth, 2000; He et al., 2011; 

Liu et al., 2013), 80%-95% for livestock operations (Woodard et al., 2006; White-Leech 

et al., 2013), and 40%-75% for septic systems (EPA, 2002; Costa et al., 2002; Katz et 

al., 2009). While useful for first-order approximation, these attenuation factors do not 

consider the spatiotemporally variable hydrological and biochemical processes 

governing migration and transformation of NO3-N from the root zone to its arrival in 

receiving water bodies. The NSILT approach also does not account for legacy NO3-N 

load resident in soils and groundwater from past decades of agricultural operations. 

Another similar catchment-scale N budget model study for the Silver Springs springshed 

in central Florida conducted by Jawitz et al., (2020) estimated that ~90% of N input to 

the landscape was removed before reaching the spring (64% removed by plant uptake 

and denitrification in surface soils, 20% by denitrification in the vadose zone, and 6% by 

denitrification in the aquifer). Prasad et al., (2016) and Desormeaux et al., (2019) 

assessed N attenuation by denitrification in the soil zone using in-situ measurements, 

however none of these studies examined the spatiotemporal variability of attenuation 

across the watershed. The spatial distributions of weather, soils, landuse, management 

practices, and water table depth play an important role in driving the hydrology and 

biogeochemical conditions that govern NO3-N transport and transformation (Wang et 

al., 2020). Due to these complexities, distributed watershed scale hydrological -water 
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quality models are often employed to quantify nutrient loads to receiving waterbodies 

and to predict the effects of land-use and management changes (Chen et al., 2013; Liu 

et al., 2013; Shen et al., 2013; Wang et al., 2019). 

Physically based, watershed-scale hydrology and water quality models such as 

the Soil and Water Assessment Tool (SWAT; Arnold et al.,1998), Agricultural Nonpoint 

Source model (AGNPS; Young et al.,1988), and Hydrological Simulation Program-

FORTRAN (HSPF; Bicknell et al., 2001) have been employed to evaluate land use and 

management practices in watersheds around the world (Niraula et al., 2012; Chen et al., 

2018; Wang et al., 2019). SWAT was selected for this study because it is a processed-

based watershed-scale agro-hydrological model that has been applied throughout the 

world to simulate plant growth processes, agricultural production (Ullrich and Volk, 

2009), hydrologic and water quality processes (Pisinaras et al., 2010), land use and 

climate change impacts on water resources (Varanou et al., 2002) and water-related 

ecosystem services (Psaris et al., 2012), and to identify critical pollution source areas 

(Panagopoulos et al., 2011). SWAT has been used to simulate nitrogen loads to 

receiving water bodies at time scales ranging from daily to annual (Jha et al., 2007; 

Ficklin et al., 2013; Boithias et al., 2014). 

The objectives of this study are to: 1) quantify the water and nitrogen budgets for 

current land uses and water and nutrient practices throughout the SFRB to  to help  

identify priorities for load reduction, 2) predict the spatiotemporal pattern of water flux , 

NO3-N loading, transport and transformation from the root zone, through the aquifer, to 

the Santa Fe River for different land uses and water and nutrient  management 

practices  and 3) evaluate the potential for alternative land use and water and nutrient 
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management practices to achieve the approximately 65% reduction in NO3-N load 

estimated to be required to achieve the NNC in streams in the SFRB. This work 

provides a framework for developing and evaluating strategies for achieving stringent 

water quality regulations while maintaining a robust agricultural economy that is 

transferrable to other agricultural watersheds throughout the world. 

Materials and Methods 

Study Area 

The Santa Fe River Basin (SFRB) is a 3584 km2 tributary basin of the Suwanee 

River (Figure 3-1. A) located in north central Florida, USA. Hydrogeomorphic 

characteristics of the SFRB vary from upstream to downstream. The upstream portion 

of the watershed is 30-86 meters above mean sea level (masl), with poorly drained soils 

that are separated from the underlying Floridan aquifer by a confining clay layer (Figure 

1B) (Arthur et al., 2005). The downstream portion ranges from 2-30 masl, with well 

drained sandy soils directly overlying karstic topography (Figure 3-1.C). The area has a 

hot, humid climate, with average annual rainfall of 1356 mm (most rain occurs from May 

through October) and a mean annual temperature of 240 C (Frisbee, 2007; Srivastava et 

al., 2014). Regional groundwater movement in SFRB is generally from higher elevations 

in the east toward the Suwanee River in the west (Figure 3-1. B). Notably, the upstream 

(confined) portion of the watershed has a distinct stream network, while surface 

drainage in the downstream (unconfined) portion of the basin is primarily limited to the 

main Santa Fe River. Poorly drained soils in the confined zone result in a high surficial 

water table and considerable surface runoff, while fine sandy soils in the unconfined 

region result in rapid infiltration and are vulnerable to NO3-N leaching (Upchurch, 2007).  
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Primary economic activities in the study area are silviculture and agriculture 

(Grubbs et al., 2007). Forest plantations (36% of basin area) and agricultural lands 

including row crops, hay, and pasture (21%) account for most of the land use in the 

study area, although wetlands (16%) and natural grass and shrublands (19%) also 

cover a large part of the study area (Figure 4). In addition to agricultural and silvicultural 

lands, NO3-N sources in this watershed include septic tanks and atmospheric 

deposition. 

SWAT Model 

The Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) is a physically 

based, semi-distributed, multi-scale model developed by the Agricultural Research 

Service of United States Department of Agriculture (USDA-ARS) to simulate continuous 

hydrological and nutrient cycles (Gassman et al., 2007; Arnold et al., 1998; 2015). 

SWAT has been widely used to predict long-term impacts of changes in land use and 

management practices on water availability and quality by simulating different crop 

rotations with a variety of irrigation and fertility practices (Arabi et al., 2008; Srinivasan 

et al., 2010; Parajuli et al., 2013; Gao et al., 2017) and simulating alternative grazing 

operations (Zadsar et al., 2016; Park et al., 2017). To represent spatial heterogeneity, a 

watershed is divided into sub-basins, which are further subdivided into hydrologic 

response units (HRUs), where each HRU contains a single soil, slope range, and land 

use producing unique hydrological characteristics (Neitsch et al., 2009). An HRU is the 

basic calculation unit within the SWAT model. Different hydrological and 

biogeochemical processes are aggregated to the subbasin level by calculating area-

weighted averages from all HRUs within a subbasin. Major hydrological processes 

including evapotranspiration, canopy storage, infiltration, surface runoff, lateral 
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subsurface flow and percolation are simulated at HRU scale. In this study, surface 

runoff and infiltration were estimated using the NRCS curve number (CN) procedure 

(SCS, 1972), and potential evapotranspiration was estimated using the Penman-

Monteith method (SWAT, 2019). The crop growth model in SWAT is based on a 

simplification of the EPIC crop model (Williams et al., 1984) in which the phenological 

development of the crop is based on daily heat unit accumulation. 

SWAT models nitrogen (N) in the vegetation, soil profile, surface water, and in 

the shallow aquifer (Arnold et al. 1998). Nitrogen may be added to the landscape by 

fertilizer, crop residue, animal waste, and atmospheric deposition, and it can be 

removed by plant uptake, volatilization, denitrification, and export in streams. NO3-N 

mass in the soil results from five processes: (1) nitrification (conversion of NH4-N to 

NO3-N), (2) addition of manure and N fertilizer, (3) mineralization of soil organic N, (4) 

biological N fixation, and (5) mineralization of crop residue N (Neitsch et al., 2011). NO3-

N transport is modeled by first supplying available NO3-N within the soil to plants. 

Remaining NO3-N in the soil zone may then be denitrified or transported from the soil 

zone via runoff, lateral subsurface flow, or percolation (Santhi et al., 2006). NO3-N 

losses in the aquifer due to denitrification are modeled as a first order process using a 

defined half-life (Neitsch et al., 2011).  

Data Sources 

ArcSWAT (Version 2012/Rev 664) was used to set up and parameterize the 

SFRB model. The key spatial input files included a digital elevation model (DEM), land 

cover, soil map and weather (Table 3-1). Daily discharge data from USGS gauging 

stations at Worthington Springs, Fort White, and Hildreth (Figure 3-1, Table 3-1) were 

used for calibration and validation of SWAT predicted streamflow. The USGS SSEBop 
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daily actual evapotranspiration (ETa) product (Senay et al, 2013) was aggregated to 

monthly values (Table3-1) and used to validate SWAT-predicted ETa at the watershed 

scale. Monthly stream NO3-N concentrations measured at Worthington Springs and Fort 

White were used for stream NO3-N load calibration (Table 3-1). Monthly NO3-N load 

was calculated from observed monthly NO3-N concentration and average monthly 

discharge. Due to insufficient discharge and NO3-N concentration data, Hildreth was not 

included in the NO3-N calibration process. Crop yield and N uptake data were validated 

against field experimental data (Zamora-Re et al., 2018, 2020; Kiniry et al., 2007).  

Land Cover Dataset 

The US Department of Agriculture National Agricultural Statistics Service (USDA-

NASS) Cropland Data Layer (CDL) for 2017 was used as the base-year land cover for 

the SFRB. However, the 2017 CDL did not differentiate pastureland into either grazed 

or un-grazed. Therefore, an aggregate land cover classification was developed by 

combining the CDL with the Florida Statewide Agricultural Irrigation Demand (FSAID) 

2017 land use map (www.fdacs‐fsaid.com). Using FSAID, pastureland cover within the 

CDL was expanded into two classes: un-grazed land included in the deafult grass land 

of bermuda grass and grazed land as bermuda grass with livestock grazing and fertilizer 

application. Roads from the urban land cover were excluded and reassigned to 

neighboring land covers to eliminate a large number of very small HRUs (Teshager et 

al., 2016). Septic tanks were considered as a separate land use class to measure their 

standalone contribution to NO3-N loading.  

Septic tank point shape files were taken from the Florida Geographic Data 

Library (FGDL; https://www.fgdl.org/metadataexplorer/explorer.jsp) and converted to 

https://www.fgdl.org/metadataexplorer/explorer.jsp
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rasters and combined with the CDL and FSAID coverage (Figure 3-2) following methods 

adopted by Jeong et al., (2011), Hoghooghi et al., (2017), and Paul et al., (2017). 

Soil Map 

A SSURGO soil map was created by aggregating detailed county scale maps, 

which consist of more than 100 types of soil (Figure 3-3).  

Weather Data 

Daily weather data (precipitation, minimum and maximum temperature, wind 

speed, and solar radiation) were obtained from the North American Land Data 

Assimilation System (NLDAS-2) climate forcing dataset. NLDAS-2 has a spatial 

resolution of 1/8th degree covering the continental United States and is available at 1-

hour temporal resolution (Xia et al., 2012). A total of 24 weather grids are contained 

within the watershed. 

Water and Nutrient Management Practices 

Water and nutrient management practices must be specified for each land use to 

obtain accurate predictions of water quantity and quality at the watershed scale. 

However, collecting detailed spatiotemporal information regarding field-scale 

management across watersheds is difficult. Therefore, a range of practices representing 

different agricultural land uses in the SFRB (row crops, hay and pasture) were defined 

based on in-depth consultation with stakeholders and Extension agents as well as 

previous studies in this region (Zamora-Re et al., 2020; FDEP BMAP 2012; 2018). 

Table 3-2 summarizes the range of current management practices for agricultural land 

uses, ranging from high to low N fertilizer and irrigation application. Management 

System 3 (MS3) represents conventional, higher-input practices historically applied in 

the region; MS2 represents improved water and nutrient management approaches 
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adopted more recently (including soil moisture sensors for triggering irrigation); and 

MS1 represents the best management practices that are considered economically 

feasible with currently available technology. For production forests, we assumed slash 

pine forest management with no fertilization, no irrigation, no thinning, and a 36-year 

rotation length.  

For calibration, it was assumed that conventional, higher-input practices (MS3) 

were applied for all agricultural land uses. This simplifying assumption was motivated by 

the timeframe for calibrating and validating modeled stream NO3-N predictions to 

observations (2000-2018) and the fact that groundwater emerging from springs in the 

SFRB has been estimated to be approximately 20 years old (Katz et al., 1999; Katz, 

2004) (i.e., having entered as recharge between 1980 and 1998). Taken together with 

the observation that peak fertilizer sales occurred in the region in the 1970s-1990s (Katz 

et al., 2001), it is thus reasonable to consider that surface water NO3-N loads observed 

during our simulation period were dominated by aquifer loadings during periods of high-

input management. The sensitivity of results to this assumption is discussed in water 

quality sections. 

In addition to simulating conventional practices (MS3), three additional scenarios 

were analyzed to evaluate the impact of changes in land use and water and nutrient 

management on NO3-N loads, fate, and transport in the SFRB: 1) application of MS2 for 

all existing agricultural land uses in the watershed; 2) application of MS1 for all 

agricultural land uses in the watershed; and 3) conversion of the entire watershed to 

slash pine forest production. The MS2 scenario reduced N fertilizer application by 15% 

for row crop rotations, 25% for hay, and 37% for pasture over MS3 and included an oat 
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cover crop in the row crop rotation. The MS1 scenario reduced N fertilizer application by 

28% for row crop rotation, 68% for hay, and 50% for pasture over MS3 and included a 

rye cover crop in the row crop rotation. The slash pine scenario was used to verify that 

the calibrated model would accurately simulate stream NO3-N concentrations of ≤0.1 

mg/L that are currently observed in forested watersheds in the region (Maddox et al., 

1992; Katz et al., 2009; FDEP, 2010) and to estimate the NO3-N load reduction that 

would be realized by removing agriculture from the basin.  

Previous studies have estimated that NO3-N load from septic tanks is 

approximately 12% of total NO3-N load in the SFRB (Eller et al., 2017; Katz et al., 

2009), and septic tank loads were included in the MS1, MS2, and MS3 scenarios. An 

input factor of 4.08 kg-N per person per year (United States Environmental Protection 

Agency (EPA), 2002) and average of 2.5 people per household septic tank were 

assumed. Atmospheric N deposition was also considered as a NO3-N source in the 

watershed (Katz et al., 2004) for all scenarios. Rainfall was assumed to contain 0.65 

NO3-N mg/L based on the annual average value (2000-2018) measured at the Bradford 

Forest National Atmospheric Deposition Program station in the SFRB 

(http://nadp.slh.wisc.edu/data/sites/; Schwede and Lear, 2014).  

Model Setup and Calibration  

Land use and soils maps were used along with a 30-m DEM to construct sub-

basins and HRUs. SWAT delineated the watershed into 31 sub-basins and further 

divided each sub basin into HRUs based on similar land use, soil, and slope class 

(Figure 3-4). Five slope classes were defined (<5%, 5-15%, 15-25%, 25-50% and 

>50%) to create a total of 13,880 HRUs, using a 0% coverage threshold for land use, 

slope, and soil (Neitsch et al., 2011). 

http://nadp.slh.wisc.edu/data/sites/
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Since N fate and transport depends strongly on the accuracy of water flows 

(Pohlert et al., 2007; Ferrant et al., 2013; Epelde et al., 2016), a sequential method for 

watershed calibration (Santhi et al., 2006; Arnold et al., 2012; Daggupati et al., 2015) 

was followed by first calibrating stream flow and then nutrient load using both automatic 

and manual calibration (Arnold et al., 2012; Glavan et al., 2010). Before calibration, a 

sensitivity analysis was performed to identify model parameters that govern the 

important processes used for calibration and validation (Gassman et al., 2007; Ercan et 

al., 2014; Hamby ,1994; Lenhart et al., 2002). Sensitivity analysis, calibration, and 

validation were all conducted using the Sequential Uncertainty Fitting version 2 (SUFI-2) 

algorithm in the SWAT Calibration and Uncertainty Program (SWAT-CUP) program. 

The ranges of parameters governing streamflow were selected based on the SWAT-

CUP manual (Abbaspour et al.,2015), peer-reviewed SWAT literature studies (Santhi et 

al., 2001; Gassman et al., 2007; Yang et al., 2016; Brighenti et al., 2019; Liang et al., 

2020), and regional knowledge.  

Given the distinct regional hydrogeological features across the SFRB (Figure 3-

1), a spatially structured calibration procedure was followed (Mechal et al., 2015; Liu et 

al., 2019). Hydrogeologically, the watershed can be divided into three zones (Figure 3-

1), and the three gauging stations along the Santa Fe River account for the cumulative 

water draining from each zone via surface flows. The model was calibrated and 

validated for daily streamflow beginning with the upstream station and moving toward 

the watershed outlet. Specifically, sub-watersheds contributing to flow at Worthington 

Springs (upstream) were calibrated first, and the resulting parameters were held 

constant while the sub-watersheds contributing to flow at Fort White were calibrated. 

https://link.springer.com/article/10.1007/s12517-017-3220-9#ref-CR29
https://link.springer.com/article/10.1007/s12517-017-3220-9#ref-CR23
https://link.springer.com/article/10.1007/s12517-017-3220-9#ref-CR33
https://link.springer.com/article/10.1007/s12517-017-3220-9#ref-CR38
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The same process was used then applied to calibrate sub-watersheds contributing to 

flow at Hildreth (downstream). Model parameters were adjusted separately for sub-

watersheds in each hydrogeological region to improve the objective function, and 

streamflow calibration was considered satisfactory when measured and simulated 

values were within ±15 percent bias (PBIAS), coefficient of determination (R2) > 0.60, 

and the Nash-Sutcliffe efficiency coefficient (NSE) was > 0.5 (Moriasi et al., 2015). After 

the three zones were sequentially calibrated, the complete watershed model was rerun 

to check the statistics of the objective function and the interaction of parameters across 

zones.  

The land use and management systems were assumed to remain constant for 

the entire simulation period during calibration and validation. Crop (corn, peanut, 

Bermuda grass) and slash pine forest growth parameters were derived from field-scale 

SWAT models calibrated using experimental data from the region (Rath et al., 2020; 

Graetz et al., 2006; Kiniry et al., 2007; Haas, 2020). As an additional check on the 

calibrated hydrologic and crop parameters, simulated monthly actual evapotranspiration 

data (ETa) was validated against monthly USGS SSEBop ETa data (Table 3-1) 

aggregated over the watershed, and simulated crop yields were compared against 

experimental data. Reproducing streamflow, ETa, and crop yield increases confidence 

that the model is adequately representing plant biomass dynamics and the partitioning 

of water between soil storage, actual evapotranspiration, and aquifer recharge 

(Faramarzi et al., 2009, 2010). The calibration period was from 2000-2011, and 

validation period was from 2012-2018, with a warmup period of eight years (1992-1999; 

excluded from analysis) to stabilize the soil water and NO3-N balance.  
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After streamflow calibration, monthly NO3-N load was calibrated and validated at 

Worthington Springs and Fort White to estimate N parameters in the confined and 

unconfined regions, respectively. The evaluation of model performance on NO3-N load 

calibration and validation was considered satisfactory when monthly statsistics of 

R2>0.30, NSE > 0.35 and PBIAS ≤ ±30% were obtained (Moriasi et al., 2015). As an 

additional check on calibrated N parameters, and to assess compliance with the NNC, 

the annual geometric mean concentration NO3-N concentrations were calculated from 

the simulated daily NO3-N load and streamflow values and compared to the observed 

annual geometric mean NO3-N concentrations measured at both stations. 

Similar to the flow calibration strategy, NO3-N calibration was carried out 

sequentially for the Worthington Springs and Ft. White stations. Sensitive parameters 

were first identified using SWAT-CUP, and then appropriate ranges of sensitive 

parameters were constrained to conform with local knowledge from available 

measurements and estimates of internal SFRB processes such as crop/tree N uptake, 

environmental losses in the soil zone (including denitrification and leaching), and 

denitrification in the aquifer (Yen et al., 2014; Sullivan et al., 2015; and Epelde et al., 

2016). Specifically, the following constraints were imposed when determining 

appropriate parameter ranges: crop N uptake limited to 50-70% of total N inputs 

(Lassaletta et al., 2014; Dosermeaux et al., 2019; Jawitz et al., 2020; Zamora-Re et al., 

2018; Rath et al., 2020) environmental N loss (denitrification and leaching) from the soil 

zone limited to 20-35% of total inputs (Prasad et al., 2016; Desormeaux et al., 2019) 

denitrification loss within the UFA limited to 30-40% (Heffernan et al., 2012; Henson et 

al, 2019); and total N input loss in the aquifer limited to ~6% (Jawitz et al., 2020). 
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Partitioning of environmental losses in the soil zone between denitrification and leaching 

depends on many factors such as soil moisture content, soil organic matter, soil carbon, 

rainfall, and temperature (Costa et al., 2002; Galloway et al., 2004; Tague et al., 2008; 

Epelde et al., 2016). Knowledge that conditions in the unconfined and semi-confined 

regions (well drained sandy soil with low organic carbon) favor leaching over 

denitrification, whereas conditions in the confined region (saturated soils, higher organic 

carbon) favor denitrification over leaching was also taken into account when 

determining parameter ranges. Finally, crop N uptake across the watershed was 

compared with measured field data (Zamora-Re et al., 2018, 2020; Rath et al., 2020) to 

build confidence in the proportion of environmental losses relative to total N inputs. 

Results and Discussion 

Water Quantity 

Table 3-3 summarizes the parameters used for streamflow calibration and their 

calibrated ranges. Eight of sixteen parameters CN2, ESCO, SOL_AWC, GW_DELAY, 

GWQMN, ALPHA_BF, and GW_REVAP were found to be sensitive (p<0.05). 

Percentage-based variations (relative changes with respect to default SSURGO value) 

for Curve Number moisture condition II (CN2), available water capacity (SOL_AWC), 

and saturated hydraulic conductivity (SOL_K) were used to maintain their spatial 

variability. Calibrated parameters were broadly reflective of the spatial variation in 

hydrogeological setting described above. For example, in the confined region, calibrated 

CN2 and AWC were increased over their default SSURGO values, leading to high 

evapotranspiration and overland runoff potential. Low values of GW_ DELAY and 

ALPHA_BF and high values of GWQMIN in this region cause rapid recharge to the 

shallow aquifer but relatively small base flow contributions to the river. On the other 
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hand, in the semi-confined and unconfined regions, calibrated CN2 and AWC values 

were decreased with respect to SSURGO, leading to low surface runoff and high 

infiltration potential, while high GW_DELAY, ALPHA_BF, and low GWQMN result in a 

relatively steady and continuous base flow contribution to the river.  

SWAT predicted daily as well as monthly streamflow dynamics at the three 

gauging stations with calibration and validation statistics in the satisfactory to good 

range (NSE≥ 0.5, R2≥ 0.6, PBIAS ±15%) except for PBIAS at Worthington Springs 

(Table 3-4, Figure 3-5). Specifically, SWAT overestimated daily and monthly streamflow 

at Worthington Springs during the calibration period (PBIAS -53% and -49%, 

respectively) and slightly during the validation period (PBIAS -17% and -15%, 

respectively), and in particular overestimated times of very low flow (<1 m3/s) (Appendix 

Figure B-1). Nevertheless, acceptable PBIAS (±15%) values were obtained at 

downstream stations Fort White and Hildreth, for both the calibration and validation 

periods. At Worthington Springs SWAT underestimated the peaks of extreme flow 

events due to tropical storm Debby in 2012 and hurricane Irma in 2017. However, peak 

flows from these events were predicted more accurately at Fort White and Hildreth. It 

should be noted that Borah et al., 2006; Arnold et al., 2012; Gassman et al., 2014 also 

found in their studies that SWAT underestimated peak flows during extreme events. 

Simulated monthly ETa accurately reproduced MODIS estimated monthly ETa (USGS 

SSEBop) when aggregated over the watershed (NSE=0.7, PBIAS= 14%, R2=0.83; 

Figure 3-6). Simulated annual average evapotranspiration (~800 mm) and recharge 

(~436 mm/year) was approximately 65% and 33% of annual rainfall which is in 
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consistent with previous values estimated for the region (Hunn and Slack, 1983; Bush 

and Johnston, 1988; Srivastava et al., 2013).  

 Water Quality  

The sensitivity analysis of watershed N parameters identified the denitrification 

threshold water content (SDNCO), soil denitrification rate (CDN), organic N 

mineralization rate CMN, and groundwater denitrification half-life (HLIFE_NGW) as the 

most sensitive water quality parameters (p< 0.05, Table 3-5); findings that are 

consistent with other studies (Akhavan et al., 2010; Yuan et al., 2015; Sullivan et al., 

2016; Malik et al., 2020). SWAT’s representation of the N cycle makes denitrification 

and leaching a competitive process in the soil zone (Pohlert et al., 2005; 2007; Yen et 

al; 2014). SWAT is a cascading percolation model, which moves water downward into 

an underlying soil layer, when field capacity is exceeded. If SDNCO is set below field 

capacity (AWC), denitrification will continue after water percolation ceases, which may 

lead to a complete depletion of NO3-N in the soil zone (Pohlert et al., 2005; 2007; 

Epelde et al., 2016). To avoid excessive denitrification in the well-drained soils of the 

SFRB, SDNCO was set at field capacity and then a constrained manual calibration was 

carried out for other parameters to fit monthly NO3-N load at measured stations. As 

dictated by SWAT model structure, all calibrated water quality parameters except for the 

groundwater NO3-N half-life (HLIFE_NGW) were assumed to be constant across the 

watershed. Notably, the calibrated half-life for denitrification in groundwater was ~50 

days for Worthington Springs versus ~1300 days for Fort White, reflecting the higher 

potential for aquifer denitrification in the confined region where the water table is near 

the land surface and dissolved organic carbon is high (Reed et al., 2018) 
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Overall, the dynamics of observed and simulated monthly NO3-N loads were 

similar for the calibration and validation periods at both stations (Figure 3-8). The model 

performance statistics were satisfactory for calibration at both Fort White and at 

Worthington Springs (NSE=0.35 - 0.46, R2 0.42-0.50, PBIAS< ±15%, Table 3-4). For 

validation, the NSE and R2 statistics were unsatisfactory at both stations (NSE -1.5 - 

0.16, R2=0.15), even though the PBIAS remained very good (PBIAS< ±15%). The 

flashiness of the NO3-N load at Worthington Springs is reflective of the flashiness of 

flow predictions. Overprediction of NO3-N load at Worthington Springs occurred during 

months with peak storm events due to hurricanes and tropical storms (e.g. 2012, 2017; 

Figure 3-8) and resulted in unsatisfactory NSE values during validation. For Fort White 

the monthly load was over-predicted for years 2012 and 2013 in the validation period. 

The frequency of measured data after 2012 was limited, which made satisfactory 

validation challenging. Less-accurate SWAT estimation of NO3-N load than stream 

discharge has been reported in many studies due to inadequate data availability 

(Chaplot et al., 2005), uncertainty in discharge and concentration measurements 

(Dakhlalla and Parajuli, 2019), and inaccuracy in the assumptions of land management 

operations (Malik et al., 2020). 

In spite of the challenges in reproducing monthly NO3-N loads, Tukey’s HSD 

analysis showed that the annual geometric mean NO3-N concentrations at Worthington 

Springs were not statistically different from measured values in any year at Worthington 

Springs and were only statistically different from the measured value in 2003 at Fort 

White (Figure 3-9). SWAT accurately predicts that the annual geometric mean NO3-N 

NNC of 0.35 mg/L is met at Worthington Springs where water tables are high, surface 
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runoff predominates and conditions are favorable for denitrification, but it is violated at 

Fort White where water tables are lower, groundwater recharge predominates, and 

conditions are not as favorable for denitrification.  

The simulated NO3-N mass balance at the watershed scale showed that total 

annual average NO3-N inputs to the SFRB (27,684 tons/year) consist of synthetic 

fertilizer (48%), mineralization of crop residues and manure (42%), and atmospheric 

deposition (10%) (Figure 3-10 A). Annual average NO3-N output was dominated by 

plant uptake (~68%), with other components including denitrification in soil (10%), 

denitrification in shallow aquifer (5%), outflow from the river (6%), and storage in the soil 

(11%) (Figure3-10 C). Of the NO3-N leached from soil into groundwater (Figure 3-10 B), 

45% denitrified in aquifer, before emerging in the river. The simulated watershed scale 

NO3-N mass balance distribution is consistent with observations in the SFRB reported 

by others. For example, the SFRB Basin Management Action Plan (FDEP, 2018) 

estimated that atmospheric deposition in the basin ranges from 8-15% of total N input. 

Corn and peanut NO3-N uptake data from field experiments conducted in the area 

(Zamora-Re et al., 2020; Rath et al., 2020) were compared to SWAT predictions of NO3-

N uptake and fell within the 25-75 percentiles of the simulated N distribution from 1980-

2018 (Appendix Figure B-3). Heffernan et al., (2010) and Henson et al., (2019) reported 

30-40% loss of NO3-N in the UFA beneath the SFRB. 

The simplifying assumption that the conventional practices of high N fertilizer 

application (MS3) were used for agricultural landuses throughout the simulation period 

(2000-2018) impacts the values of the calibrated nitrogen cycle parameters. In the 

SWAT model, after plant uptake the excess N either dentrifies in the soil or leaches to 
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groundwater where denitrification can also occur. More N input to the surface will cause 

more loading to the aquifer and may require higher dentrification to match observed 

NO3-N concentration values in the river. In this study the inclusion of processes 

measured at field scale such as environmental loss (leaching and denitrification), N 

uptake and N load to streamflow was used to reduce the uncertainty in parameter 

estimation as much as possible. However, the assumption of MS3 practices throughout 

the calibration period will result in higher loss of N through denitrification to match river 

nitrate concentrations than if lower N input practices were assumed.  

Spatial Analysis  

Recharge, actual evapotranspiration, overland flow, lateral subsurface flow and 

baseflow generated at the HRU scale were averaged over the simulation period (2000-

2018) to visualize the spatial variability of water balance components across the 

watershed (Figure 3-7). These figures reveal clear spatial patterns that are consistent 

with previous studies (Grubbs, 1998; Srivastava et al., 2013, Hunn and Slack, 1983), 

including: 1) more recharge in the unconfined and semiconfined zones (> 300mm/year) 

than the confined zone (0-300 mm/year); 2) more ETa in the confined zone (700-1600 

mm) than in the unconfined and semi-confined zones (300-700mm), with wetlands and 

water bodies showing highest ETa in all regions; 3) more baseflow to the stream from 

the unconfined and semi-confined zones; and 4) more overland flow to the streams from 

the confined zone. Overall, SWAT simulations show that the Santa Fe River gets 

approximately 85% of its annual water yield from base flow, which is consistent with the 

findings of Hunn and Slack (1983). Base flow contributions ranging from 200 mm to 

more than 750 mm in the unconfined region provide significant opportunity for NO3-N 

leaching from the soil zone and transport through the aquifer to the stream by baseflow. 
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Figure 3-11A and B illustrate the wide spatial variability of leaching and 

denitrification losses across the watershed (i.e., from 0 to >100 kg N/ha/year), with 

considerably more leaching occurring in the unconfined zone. Denitrification occurred 

throughout the watershed, with the highest rates in the confined zone. Figure 3-12 A 

and B show the relative magnitudes of annual average denitrification in, and leaching 

from, the soil zone across HRUs by land use for the confined and unconfined zones, 

respectively. Row crops and pasture have the highest leaching and denitrification losses 

per unit area in both the confined and unconfined zones, with the unconfined zone 

having slightly higher average leaching losses and slightly lower average denitrification 

losses than the confined zone. In both zones, hay has higher leaching than 

denitrification losses, whereas septic tanks have higher denitrification than leaching 

losses. Forests, wetlands, and other land uses (shrubland, natural grasses and barren 

land) have low leaching and denitrification losses in both zones. 

Estimated annual average denitrification of ~45 kg N/ha/year and ~52 Kg 

N/ha/year in the soil zone beneath row crops in the unconfined and confined zones, 

respectively, are consistent with values of 20-80 kg N /ha from irrigated agricultural land 

reported in the literature (Simone et al., 2005; Eplede et al., 2015, 2016). Estimated 

average denitrification rates for forests, wetlands, and other land uses (4.6, 7.2, and 5.6 

kg N/ha) are slightly lower than the 13 to 49 kg N/ ha reported by Sullivan et al., (2016) 

and Yen et al., (2014) for unmanaged (non-fertilized, non-irrigated) land uses. The 

annual average leaching from septic tanks in the unconfined and confined zones were 

estimated to be 4.8 kg N/ha/year and 2.4 kg N/ha/year, respectively, which are in the 
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range of to the 2.9 kg/ha/year estimated for the Silver Springs region in Central Florida 

by Jawitz et al., (2020).  

Over the entire SFRB, the total estimated NO3-N load leached to the aquifer was 

estimated to be 2783 tons/year (Table 3-6). Pasture contributed the greatest load to the 

aquifer (1541 tons/year, 55%) due to the relatively large land area assigned to pasture 

(12%) and leaching rate of ~48 kg N/ha/year. Row crops were the next largest 

contributor (632 tons/year, 22%) with a smaller land area and leaching rate of ~45 kg 

N/ha/year, followed by forests (278 tons/year, 10%), which cover a large proportion of 

the basin (36%) but have low leaching rates of 4.8 kg N/ha/year. Of the agricultural land 

uses, hay contributed the smallest load (222 tons/year, 8%). The very high leaching 

rates for few pasture and row crop HRUs (Figure 3-11) are due to high recharge 

simulated from low soil available water content (Soil_AWC). However, the contributing 

area of these regions is less than 1% of the watershed, so there was negligible effect on 

the total leaching to the groundwater. 

 Scenario Analysis  

Figure 3-13 A shows annual average leaching per unit area across HRUs for 

each land use across scenarios. The MS2 scenario reduced mean annual average 

leaching from row crops by ~40%, pastures by 44%, and hay by 15% compared to the 

conventional practices (MS3) used for calibration. The MS1 scenario reduced annual 

average leaching from row crops by 65%, pastures by 50% and hay by 15% compared 

to the MS3 conventional practices. When aggregated across the watershed, the MS1 

and MS2 scenarios reduced total leaching to groundwater by ~43% and ~34%, 

respectively compared to MS3 (Figure 3-13 B). Moving from MS3 to MS1 reduced the 

pasture contribution of the total from 55% to 46%, the row crop contribution of the total 
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load from 22% to 14% and increased the forest contribution to total load from 10% to 

16% (Figure 3-13 B). Converting the entire watershed to slash pine forest reduced the 

total leaching to groundwater to 492 tons/year, an ~80% reduction over the MS3 

scenario. The surface water NO3-N load in the river at Fort White was reduced from 755 

tons/year for MS3, to 588 tons/year for MS2, to 522 tons/year for MS 1, and to 140 

tons/year for the slash pine scenario. As a result, NO3-N concentrations at Fort White 

were reduced from an average annual geometric mean of 0.79 mg/L (monthly 

concentration ranging from 0.45 to 1.4 mg/L) for MS3, to 0.57mg/L (0.32 to 0.96 mg/L) 

for MS2 and to 0.5mg/L (0.28 to 0.87 mg/L) for MS1, all of which are above the NNC 

criteria of 0.35 mg/L NO3-N (Figure 3-14). In contrast, the slash pine-only scenario 

reduced simulated stream NO3-N concentration to an annual average geometric mean 

of 0.11 mg/L (0.06 to 0.24 mg/L), consistent with concentrations currently observed in 

forested conservation lands in the region (Maddox et al., 1992; Katz et al., 2009; FDEP, 

2010). 

 Conclusions 

Accurate quantification of NO3-N loading to springs and rivers in karst 

watersheds is a major challenge due to heterogeneity in soils, geology, land use and 

land management practices. In this study, a Soil and Water Assessment Tool (SWAT) 

model was calibrated and validated to predict the sources, fate and transport of NO3-N 

in the karstic SFRB. Despite the watershed complexity, SWAT satisfactorily predicted 

monthly streamflow (NSE=0.62-0.78), monthly evapotranspiration (NSE=0.70), and 

annual geometric mean NO3-N concentrations (no statistical difference in 17 of 18 years 

for the 2000-2018 time-period).  
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Model results estimated that of the total NO3-N added to the SFRB through 

atmospheric deposition, fertilization and mineralization, approximately 68% is removed 

by plant uptake, 10% by denitrification in the soil and 5% by denitrification in 

groundwater before reaching the Santa Fe River. Furthermore, model results indicated 

that leaching from grazed pasture, row crops, forests and hay currently contribute 

approximately 55%, 22%, 10% and 8% of the total NO3-N stream load respectively. 

Scenario analyses showed that adoption of agricultural best management practices that 

are considered economically feasible with currently available technology throughout the 

watershed has the potential to reduce total NO3-N load to the Santa Fe River by 

approximately 31%, but that this would not be adequate to meet the NO3-N Numeric 

Nutrient Criterion (NNC) that has been established to protect springs and rivers in the 

basin. If entire watershed was converted to slash pine forest, model results indicate that 

the total NO3-N load to the Santa Fe River would be reduced by 80%, achieving the 

NNC and returning the river to background concentrations observed in other forested 

watersheds in the region.  

Results from this study show the significance of the assessment of different 

watershed processes such as recharge, leaching, and denitrification influenced by crop 

management, soil characteristics and hydrometeorological conditions on the estimation 

of nitrate load. The deduced N fluxes such as denitrification and leaching were indirectly 

validated by comparing with general ranges available from the past experiments 

conducted in the region and other literature values. However, in the future field 

measurements of N fluxes from different soil and agricultural land use types in the 
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SFRB (particularly pasture and row crops) should be obtained to improve the calibration 

and validation of the regional model.  

Despite its simplified groundwater flow algorithms, SWAT reproduced the in-

stream nitrate concentration reasonably well, which provides confidence in the 

quantification of nitrate loads to the stream from different land management practices.  

However, the groundwater residence times, and groundwater nitrate half-life calibrated 

for SWAT are unreasonably short.  Furthermore, the SWAT delineated SFRB surface 

drainage basin did not cover the entire groundwater contributing area to Fort White that 

is estimated from potentiometric maps. Thus, while the direction and relative magnitude 

of changes in SWAT stream nitrate concentration predictions that would result from 

changes in management practices are robust, the timing and precise value of changes 

in stream nitrate concentrations are less reliable. 

In future work, the SWAT model should be coupled with MODFLOW, MODPATH 

and/or RT3D (Reactive Transport in 3- Dimensions) to more accurately simulate the 

source, fate and transport of NO3-N through the Upper Floridan aquifer to the Santa Fe 

River.  This will allow scientists, governmental regulators, agricultural producers, and 

nongovernmental organizations to more accurately 1) evaluate the regional crop 

production – water quality – water quantity tradeoffs associated with alternative land use 

and land and water management strategies; and 2) determine the lag time required to 

see the impact of improved management practices on reducing groundwater, spring and 

stream NO3-N concentrations. Results of these efforts would provide a framework for 

developing effective, socially acceptable strategies for achieving stringent water quality 
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regulations while maintaining a robust agricultural economy that is transferrable to other 

agricultural watersheds throughout the world. 
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Table 3-1. Input data for model set up, calibration, and validation.  
Data Scale/Extent Source 

Model Setup 

DEM 30 m raster National Elevation Dataset, USGS, http://ned.usgs.gov/ 

Land use/land cover (2017) 30 m raster USDA-NASS Cropland Data Layer, FSAID 

Septic Tanks Point shape files Florida Geographic Data Library  
Soil types 1:12,000 to 1:63,360 (30 m to 52 m) Soil Survey Geographic Database (SSURGO) (USDA-

NRCS, 2018), http://soildatamart.nrcs.usda.gov 
Weather  Daily NLDAS https://ldas.gsfc.nasa.gov/nldas 

Crop and Forest Growth 
Parameters 

Farm/forest scale Experimental data (Zamora-Re et al., 2018, 2020.  
Graetz et al., 2006; Kiniry et al., 2007; 
Haas, 2020) 

Other data 

Calibration, Validation and Comparison 

Discharge: Worthington 
Springs, Fort White, Hildreth a  

2000-2011 (calibration, Daily) 
2012-2018 (validation, Daily)  

Suwannee River Water Management District (SWRMD).  

ETa  2000-2015 (validation, Monthly) USGS SSEBop 
https://earlywarning.usgs.gov/ssebop/modis/daily  

Crop (Corn and Peanut) Yield 
and N uptake, Bermuda Grass 
 

2015-2017 (validation, Annual) Experimental data (Zamora-Re et al., 2018, 2020;  
Graetz et al., 2006; Kiniry et al., 2007) 
 

NO3-N load (Worthington 
Spring b and Fort White c) 

2000-2011 (calibration, monthly), 
2012-2017(validation, monthly) 

Suwannee River Water Management District SWRMD 

NO3-N concentation 
(Worthington Spring b and Fort 
White c) 

2000-2018 validation (geometric 
annual mean) 

Suwannee River Water Management District SWRMD 

a Hildreth data available from 2008-2018. Worthington Springs was missing data between May - July in 2005 and 2006. 
b monthly data, 118 data points available (2000-2011) and 30 data points available (2012-2018) 
c: monthly data, 137 data points available (2000-2011) and 24 data points available (2012-2017) 
 

https://ldas.gsfc.nasa.gov/nldas
https://earlywarning.usgs.gov/ssebop/modis/daily
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Table 3-2. Agronomic practices assumed for the three Management Systems for corn-peanut rotation, hay, and 
pasture.         

  AGRR (Row Crops) (Corn-Peanut Rotation)         

Management 
Systems 

Crops N fertilizer (kg/ha) Irrigation scheduling 
method 

Planting date       Harvest    

        

MS3  
Corn 336 

Calendar 
 March 20th August 5th         

Peanut 11.2  May 12th  October 2nd          

*MS2 
Corn 290 SWAT Auto irrigation 

(0.65 plant water 
stress threshold) 

 March 20th August 5th         

Peanut 6.73  May 12th  October 2nd  
        

**MS1 
Corn 240 SWAT Auto irrigation 

(0.65 plant water 
stress threshold) 

 March 20th August 5th         

Peanut 0  May 12th  October 2nd  
        

  Hay         

MS3 Bermuda  89.7 (4 times/yr) No Irrigation - 4 times/yr a         

MS2 Bermuda  89.7 (3 times/yr) No Irrigation - 4 times/yr a         

MS1 Bermuda  112 (1 time/yr) No Irrigation - 1 time/yr          

  Pasture (Grazed)         

MS3 Bermuda  89.7 (2 times/yr) No Irrigation - b         

MS2 Bermuda  112 (1 time/yr) No Irrigation - b         

MS1 Bermuda  89.7 (1 time/yr) No Irrigation - b         

                 Forest        

 Slash Pine No fertilizer No irrigation  
Rotation length 

36 yearsc 
     

a 6-week harvest interval, 80% biomass removal per harvest. 
b Grazing 1 cow/0.81 ha; Consumption=9.07 kg/day/cow dry matter; Excretion=5.66 kg/day/cow dry matter, 9.07 kg 
hay/day/cow supplied from Nov to Feb. The amount of biomass that is reduced by trampling is 9.07 kg/day/cow.  
c Rotation length:36 years-35 years growth (plant -Jan 1st harvest -Dec31st), one-year fallow, no thinning. *Oat cover crop 
planted after corn and peanut harvest with no irrigation. 2 tons of chicken litter applied to oats after peanut harvest only. 
Kill (incorporating 100% biomass) one month before next crop planting. ** Rye cover crop plantation (post corn and 
peanut harvest) with no fertilizer and no irrigation and kill (incorporating 100% biomass) one month before next crop 
planting. 
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Table 3-3. Parameters used for streamflow calibration.  
Parameter Description Initial Range Final Values 

     

Subbasins: 
confined zone (5-
7,10-13,16,19,23-
25,29) 

Subbasins: 
semi-confined 
zone (5-7,10-
13,16,19,23-
25,29) 

Subbasins: unconfined 
zone  
(1-
4,14,18,20,22,27,28,31) 

v_SURLAG.bsn Surface runoff lag time(days) 1-10 3     

Hydrologic parameters 

r_CN2.mgt *c 
Initial SCS runoff curve number 
for moisture condition II -0.5 -0.2 0.05 -0.45 -0.5 

v__OV_N.hru*s Manning´s “n” overland flow 0.1-0.5 0.33 0.35 0.35 

v_EPCO.hru Plant uptake compensation factor 0.01-1 0.8 0.8 0.8 

v_ESCO.hru *c *s *u 
Soil evaporation compensation 
factor 0.01 - 1 0.34 0.54 0.57 

Soil Parameters  

r_SOL_AWC.sol *c *s *u 
Available water capacity (mm 
H2O/ mm soil) 

-0.7 - 0.5 0.44 -0.51 -0.53 

r_SOL_K.sol 
Saturated Hydraulic Conductivity 
(mm/hr) 

-0.2 - 0.2 0.09 -0.09 -0.1 

Channel Parameters  

v_CH_N2.rte Manning's "n" value channel 0.014 - 0.3 0.013 0.13 0.13 
r_CH_W2.rte Average width of main channel -0.01 - 0.3 -0.033 0.175 0.175 
r_CH_S2.rte Average slope of main channel -0.2 - 0.2 0.073 -0.16 -0.16 

Groundwater Parameters 

v_GWQMN.gw *s *u Threshold depth of for return 
flow(mm) 

0-4000 2486.57 349.18 360 

v_ALPHA_BF*s *u Alpha base flow factor 0-1 0.46 0.86 0.86 
v_GW_DELAY.gw*s *u Groundwater delay time (day) 1-500 5.18 263.75 265 
r_GW_REVAP.gw *s *u Groundwater “revap” coefficient -0.01 - 0.2 0.02 0.11 0.11 
r__REVAPMN.gw Threshold depth of water for 

“revap”  
-0.2 - 0.2 -0.028 -0.11 -0.137 

r_RCHRG_DP.gw Deep aquifer percolation fraction -0.1 - 0.2 0.1 -0.003 -0.00025 

v: indicates the existing parameter value is replaced by the calibrated value; r : indicates the existing parameter value is multiplied 
by (1+ the calibrated value); * indicates sensitive parameters (p<0.05) c: confined, s: semiconfined, u: unconfined



 

94 
 

Table 3-4. Evaluation of the hydrological goodness of fit of the streamflow (daily and monthly scales) and NO3-N load 
(monthly).  

                                                                                              Daily 

Category Gauging site Calibration     Validation 

    NSE R2 PBIAS (%)   NSE R2 PBIAS (%) 

Streamflow 
Worthington 
Spring 

0.51(s) 0.71(g) -53 (u)   0.60(s) 0.66(s) -17.42(u) 

  Fort White 0.66(s) 0.74(g) 6.70(g)   0.72(s) 0.83(g) 12.90 (g) 
  Hildreth* 0.55 (s) 0.58(s) -9.61(g)   0.77(s) 0.78(s) 10.58 (g) 

  Monthly 

    NSE R2 PBIAS (%)   NSE R2 PBIAS (%) 

Streamflow 
Worthington 
Spring 

0.64(s) 0.81(g) -49.20(u)   0.72(g) 0.8 (g) -15.40(s) 

  Fort White 0.72(s) 0.77(s) 6.70(g)   0.62(g) 0.81(g) 12.90 (g) 
  Hildreth* 0.6(s) 0.6(s) -10.37(g)   0.66(s) 0.8(g) 5 (g) 

  Monthly 

    NSE R2 PBIAS (%)   NSE R2 PBIAS (%) 

Nitrate 
Load 

Worthington 
Spring 

 0.35 (s) 0.42(s) 11(vg)   
 

-1.50 
(u) 

0.15(u) 7.70(vg) 

  Fort White 0.46(s) 0.50(s) -9.61(vg)   
-0.16 
(u) 

0.15(u) -15.40(vg) 

  Monthly 

  Validation 

    NSE R2 PBIAS (%)   
ETa Watershed 0.70 0.83 14   

* Hildreth has streamflow data from 2008-2018. s= satisfactory u=unsatisfactory g=good, vg=verygood (Moriasi et al., 2007, 

2012, 2015). 
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Table 3-5. Parameters used for NO3-N load calibration.  
Parameter  Description Final Range  Value Used 

v_CDN* Denitrification exponential rate 
coefficient 

0.56-0.85 0.75 

v_CMN* Rate factor for humus 
mineralization of active organic N 

0.0001-0.0002 0.0001 

v_NPERCO* Nitrogen percolation coefficient 0.18-0.25 0.2a 
v_BIOMIX Biological mixing efficiency 0.2-0.4 0.2a 
v_RSDCO Residue decomposition coefficient 0.05-0.08 0.05a 
v_SDNCO* Denitrification threshold water 

content 
0.99-1.1 1b 

v_HLIFE_NGW Half-life of N in groundwater (days) 
(sub basins: contributing to 
Worthington Springs) 

 
25-100 

 
50 

v_HLIFE_NGW* Half-life of N in groundwater 
(days)(sub basins: contributing to 
Fort White) 

1250-2000 1300 

v_ indicates that the existing parameter value is replaced by a given value. 
*Sensitive parameters (p<0.05)  
a Default values used in the model 
b Set at field capacity 
 

 Table 3-6. Total load and % of total load contribution from different land uses across watershed 

Land uses 
Row 
crops 

Forest Hay Pasture Wetland 
septic 
tanks 

Other 

Load (Tons/year) 610 278 222 1541 27 27 78 

% of Total Load 22 10 8 55 1 1 3 
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Figure 3-1. Floridan aquifer system (FAS) with location map of the Suwanee River Basin (SRB) and its tributary the Santa 

Fe River Basin (SFRB). (A) SRB and SFRB in Floridan aquifer system. (B) Hydrogeological features of Santa 
Fe River Basin. (C) Santa Fe River Basin topography, stream network and GD (gauge discharge) stations. 
http://floridanwater.org/issues/ 

http://floridanwater.org/issues/
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Figure 3-2. Land use classification with percentage of coverage in SFRB. (A) Land Use map. (B) Area percentage (septic 

tank area is included in urban percentage). (C) Spatial distribution of septic tanks in the SFRB. 
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Figure 3-3. SSURGO soil classification. Only soil types covering more than 30 sq km in the watershed are shown in the 

map. http://soildatamart.nrcs.usda.gov.

http://soildatamart.nrcs.usda.gov/


 

99 
 

  

Figure 3-4. SFRB with streams, calibration gauge stations, sub basins and distinct hydrogeological zones for sequential 
calibration scheme. Confined zone encompass sub basins up to Worthington Spring, semi-confined Zone 
covers sub basins from Worthington springs to Fort White, and Unconfined zone includes sub basins from 
Fort White to Hildreth.   
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Figure 3-5. Observed and simulated hydrographs for Worthington spring, Fort White, 

Hildreth along with calibration and validation duration.  
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Figure 3-6. Monthly ETa comparison between USGS SSEBop data and SWAT 

predictions at the watershed scale. 
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Figure 3-7. Spatial distribution of annual average (2000-2018) recharge, ETa and flow components. (A) Recharge and 
ETa. (B)  overland flow, subsurface lateral flow, and base flow across watershed.

A 

B 



 

103 
 

 

 

 

Figure 3-8. Calibration (2000-2011) and validation (2012-2018) of monthly NO3-N load at Worthington Springs (top) and at 
Fort White (bottom).
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Figure 3-9.  Annual NO3-N geometric mean at Worthington Springs and at Fort White. (A) Worthington Springs (measured 

data for year 2006 and 2007 were not available). (B) Fort White. Different letters indicate significant difference 
at α = 0.05 (Tukey’s HSD analysis).

A 

B 



 

105 
 

  
 

Figure 3-10. Watershed‐scale average N annual mass balance (2000-2018). (A) 
Distribution of annual average N input components. (B) Distribution of 
annual average soil N outputs including uptake and environment losses 
including denitrification, leaching, surface runoff loss, and subsurface 
lateral flow loss. (C) Distribution of annual average watershed N output.

A B 

C 



 

106 
 

 
Figure 3-11. Spatial distribution of annual average denitrification and leaching (2000-2018). 
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Figure 3-12. Denitrification and leaching from different land use across HRUs in confined and unconfined zone 

(semiconfined+unconfined) across the watershed. AGRR: Row crop rotation. 
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Figure 3-13. Annual average leaching and total load for each management system. (A) annual average leaching across 

HRUs for each land use and management system. (B) Percentage of total load contribution by management 
systems. 
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Figure 3-14. Monthly average NO3-N concentration (mg/L) at Fort White from all scenarios.
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CHAPTER 4 
ESTIMATION OF GROUNDWATER CONTRIBUTING AREA AND TRAVEL TIME TO 

SPRINGS IN SANTA FE RIVER BASIN 

Background 

Nitrate-Nitrogen (NO3-N) contamination of groundwater is a worldwide concern 

because of its detrimental effects on the environment (Bowen et al., 2007) and human 

health (De la Monte et al., 2009). NO3-N contamination is of particular concern in karst 

aquifers because soil water enriched with NO3-N can rapidly infiltrate to the aquifer and 

move through karst features, such as sinkholes, conduits, and fractures, leading to 

aquifer and spring contamination. The Upper Floridan aquifer (UFA), one of the most 

productive karstic aquifers in the world, is a major source of public water supply and 

irrigation in north and central Florida (Bush and Johnson, 1988). Increasing NO3-N 

concentrations in the springs of Upper Floridan Aquifer (UFA) over the past 40 years 

(Upchurch et al., 2007; Heffernan et al., 2010) has been tied to anthropogenic activities 

such as fertilizer and manure application for agricultural production (Katz et al., 2004). 

Growing concern over the environmental impacts of elevated NO3-N in the UFA has led 

to the development and implementation of environmental regulations and improved 

water and nutrient management practices (Maresch et al., 2008; Osmond et al., 2012). 

However, according to recent reports by the Florida Department of Environmental 

protection (FDEP, 2017, 2018) and the Florida Springs Institute (2020), little or no water 

quality improvement has been achieved in the springs in the Santa Fe River Basin 

(SFRB) overlying the UFA in North Florida. Furthermore, a project conducted by FDEP 

from 2012-2016 to quantify the effects of water and nutrient Best Management Practice 

(BMP) implementation in the SFRB Devil’s Complex region (i.e., the Ginnie and Gilchrist 

Blue springsheds) showed no significant decrease in spring NO3-N concentration 
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despite BMP adoption. Several possible reasons were hypothesized for this lack of 

observed response, including: 1) limitations of the effectiveness of BMPs; 2) presence 

of legacy nitrogen in the root zone and shallow aquifer; and 3) a time lag between when 

BMPs are implemented and when improvements in receiving water quality can be seen. 

Lag time is considered one of the most important reasons that watershed planning fails 

to meet water quality expectations (Meals et al., 2001, 2010). 

Continuous long-term water quality monitoring of surface and groundwaters to 

track the effectiveness of BMPs implemented at the field scale is time consuming and 

expensive (Choubey et al., 2010; Geissen et al., 2015). In addition, uncertainty in the 

estimation of the time it will take to detect the impact of BMP adoption on receiving 

waters is associated with uncertainties in transport pathways, physical and 

biogeochemical processes, and complex flow in karst aquifers (Snider et al., 2010; 

Lindsay et al., 1991; Husic et al., 2019). Many simplified surface-groundwater models 

such as TOPMODEL (Beven ,1989); the Semi distributed Land Use-based Runoff 

Processes (SLURP; Kite, 1996); and the Soil and Water Assessment Tool (SWAT; 

Arnold et al., 1996) have been used to study the effectiveness of BMPs in terms of 

reducing NO3-N load to surface and groundwaters. However, these simplified models 

have limited capabilities to accurately predict groundwater flowpaths and travel times 

(Refsgaard, 1996; Beven, 1989). Understanding groundwater travel time is important for 

evaluating the impacts of land use and management practices on receiving water 

bodies because it provides insights on when recovery of the receiving waterbody can be 

expected (McGuire and McDonnell, 2006). 
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In Chapter 3, a semi-distributed hydrological-water quality SWAT model was built 

for the SFRB to study the sources, fate, and transport of N from the land surface to the 

Santa Fe River. SWAT simulations indicated that NO3-N transport to the river through 

base flow was the dominant pathway for the SFRB. However, in SWAT, water flow and 

solute transport in the subsurface is driven by a simplified storage routing technique 

with exponential delay parameters. The transport of NO3-N applied on the land surface 

through the subsurface to streams is quantified by SWAT in three sequential processes: 

1) transport through the soil zone, governed by an exponential percolation lag time 

parameter (TTperc); 2) transport through the vadose zone to the groundwater (shallow 

aquifer) governed by an exponential groundwater delay parameter (GW_DELAY); and 

3) transport within the shallow aquifer to the stream through baseflow governed by an 

exponential groundwater recession parameter (ALPHA_BF). Each of these lag 

parameters are estimated by calibrating the model to observed streamflow data.   

The simplified representation of subsurface processes in SWAT has been shown 

to lead to low performance in base flow simulation as well as inaccurate estimation of 

groundwater transport because it does not accurately characterize spatially distributed 

Darcy fluxes and pore water velocities needed for predicting travel paths and travel 

times (Bosch et al., 2010; Guse et al., 2014; Pfannerstill et al., 2014a; Nguyen et al., 

2017). For example, groundwater emerging from springs in the SFRB has been 

estimated to have a median age of 20-40 years using isotopes and natural tracers 

(Pittman et al., 1997; Katz et al., 1999, 2004, 2009; Sepulveda et al., 2002; Scott et al., 

2004; Planert et al., 2007; Srivastava, 2014; Martin et al., 2016). However, the 

parameters calibrated for the SFRB SWAT model (Chapter 3) simulate a maximum 
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travel time of about 3 years for water and NO3-N to move from the soil zone through the 

aquifer to the river. Critically, the SFRB model domain, as delineated by SWAT, 

captures the surface drainage area based on topography but does not include the entire 

region that contributes groundwater to the river (i.e., the “groundwatershed” or 

“springshed”, which has been estimated from piezometric maps).  Neglecting these 

recharge areas limits SWAT’s ability to accurately predict the magnitude and timing of 

water quality impacts resulting from land use and management practice changes in the 

SFRB.  

 Under the Florida Springs and Aquifer Protection Act (Chapter 373, Part VIII, 

Florida Statutes [F.S.]), the Florida Department of Environmental Protection (FDEP) 

identified 30 “Outstanding Florida Springs (OFS)” that required additional protections to 

ensure their conservation and restoration for future generations.Out of 30 springs, three 

springs in the SFRB are identified as impaired OFS that have NO3-N concentrations 

above the Numeric Nutrient Criteria (NNC) of 0.35 mg/L NO3-N: Devil’s Complex, 

Hornsby Spring, and the Ichetuknee Springs Group. To restore and protect these 

springs the Santa Fe Basin Management Action Plan (BMAP) delineated Primary Focus 

Areas (PFAs) within the springsheds. The PFAs are vulnerable areas for NO3-N inputs 

to the UFA particularly due to the connectivity between groundwater pathways and the 

springs. These areas serve as focal points for implementing restoration strategies to 

reduce spring NO3-N concentrations (FDEP, 2018). In particular the PFAs boundaries 

defined in the SFRB BMAP (FDEP, 2018) were developed by overlaying geographic 

information system (GIS) coverages of high groundwater recharge rates, presence of 

sinkholes and conduits, soil types, connectivity between groundwater pathways and 
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springs, aquifer vulnerability, and potential nitrogen source information. These 

characteristics are associated with increased pollutant loading from surface to the 

aquifer, but accurately mapping PFAs boundaries requires knowledge of groundwater 

contributing areas, flow paths and travel times through the aquifer to the springs. It was 

proposed by FDEP (2018) that tracer or modeling studies be used in the future to 

determine groundwater flow paths and travel times to improve the delineation of PFAs. 

These serves, in part, as the motivation to conduct this study. 

Uncertainties in quantification of groundwater flow paths and travel time 

distributions (TTD) may result from uncertainties associated with external forcing such 

as recharge, internal hydrogeologic properties (conductivity, porosity, saturated aquifer 

thickness), the groundwater contributing area, the head within the aquifer, and the 

hydraulic gradient (Ajami et al., 2007; Darracq et al., 2010; Jing et al., 2019). This study 

aims to improve the prediction of groundwater flow and transport processes in the 

SFRB by coupling the SWAT model developed in Chapter 3 with a numerical 

groundwater model (MODFLOW 2005, Harbaugh, 2005) and particle tracking algorithm 

(MODPATH 7, Pollock, 2016). Devil’s complex springs was selected for particle tracking 

analysis due to its proximity to the Fort White gauging station which was a focus for 

chapter 3 analyses. The resulting SWAT-MODFLOW-MODPATH  model was used to 1) 

investigate the impact of  external forcings such as recharge and aquifer properties (i.e., 

porosity and hydraulic conductivity) on the groundwater contributing area, flow paths 

and travel time distribution for the region of the Santa Fe River where the Devil’s 

Complex springs emerge, and 2) estimate the effect of changes in land use and land 
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management practices on groundwater NO3-N concentrations contributing to the Devils 

Complex springs, and the time it will take for these changes to appear in the springs.  

Study Area  

The Floridan Aquifer System (FAS) underlies an area of about 260,000 km2 in 

the southeastern United States, including all of Florida and parts of Georgia, Alabama, 

and South Carolina (Figure 4-1).The FAS is composed of two main aquifers, the Upper 

Floridan aquifer (UFA) and the Lower Floridan aquifer (LFA) separated by a composite 

semiconfining unit  which ranges from low-permeable clays, dolomites and gypsiferous 

anhydrite in west-central Florida to permeable limestone along the east coast of Florida 

and elsewhere (Knowles et al., 2002; Katz et al., 2004). Where these intervening 

sediments and rock are permeable, the UFA and LFA behave as a single unit (Knowles 

et al., 2002). Conversely, where the intervening sediments are less permeable, there is 

less hydraulic connection between the UFA and LFA. Regardless of rock type, wherever 

the middle confining unit is present, it restricts the movement of groundwater between 

the UFA and (LFA) (Miller, 1986). Portions of the FAS shown in blue (Figure 4-1) are 

unconfined where confining unit is breached, or absent providing optimal conditions for 

water to percolate rapidly into the Upper Floridan aquifer. 

The UFA is of primary importance to the north and central Florida as a source of 

water for irrigation, domestic and industrial supply, and as a source of water that 

discharges to springs and streams providing recreational and tourist destinations and 

unique aquatic habitats. Due to extensive use of water from the UFA, the 

hydrogeological properties have been well-investigated and reported by United States 

Geological Survey (USGS, 2007). The transmissivity of the Upper Floridan aquifer 

varies over several orders of magnitude ranging from 120.77 m2 /d to 120,773 m2 /d 

https://en.wikipedia.org/wiki/Dolomite_(rock)
https://en.wikipedia.org/wiki/Anhydrite
https://en.wikipedia.org/wiki/Anhydrite
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(Faulkner, 1973; Kuniansky et al., 2012). Almost 90 percent of the natural discharge to 

rivers and springs is estimated to come from the Upper Floridan aquifer in central 

Florida (Bush and Johnston, 1988; Sepulvada et al., 2012). The geologic characteristics 

and hydraulic properties of LFA, assessment of vertical flow between the UFA and the 

LFA and flow within the LFA itself are not well studied. There is a paucity of water-level 

and aquifer characterization measurements available as LFA is located at greater depth 

(Sepulvada et al., 2002). The Lower Floridan includes the lower part of the Avon Park 

Formation, the Oldsmar Limestone, and the upper part of the Cedar Keys Formation.  

The SFRB study area, located over the north-central part of the FAS, consists of 

several hundred meters of limestone and dolostone but only the upper 0-54 m, the UFA 

comprised primarily of Ocala Limestone, yields potable water (Hunn and Slack, 1983). 

The stratigraphic units constituting the upper part of the aquifer are, from oldest to 

youngest: the Eocene Ocala Limestone, the Oligocene Suwannee Limestone, and the 

limestones at the base of the Miocene Hawthorn Group. Where the Ocala Limestone is 

not exposed at the surface, it is covered by the Hawthorn Formation and a surficial 

aquifer of Plio-Pleistocene sands (Scott et al., 2004). Spatially variable erosion of the 

Hawthorn Formation has led to variations in UFA confinement throughout North Florida. 

The erosional boundary of the Hawthorn Formation is known as the Cody Escarpment, 

and defines a critical boundary for defining UFA vulnerability to contamination. Down 

gradient from the Cody Escarpment, where limestone is exposed, and vulnerability is 

increased by enhanced surface-to-aquifer connectivity. UFA is underlain by a lower 

permeability limestone called the Avon Park Formation that is 54-225 m thick (Figure 4-

2).  

https://link.springer.com/article/10.1007/s10040-010-0669-y#ref-CR17


 

117 
 

Methods 

In this study the groundwater contributing area, flow paths and travel time 

distribution for the Devil’s Complex springs were estimated by coupling the calibrated 

SWAT model (Rath, Chapter 3) with calibrated North Florida-Southeast Georgia 

(NFSEG 1.1) MODFLOW model (Durden et al., 2019) and using the coupled model to 

drive the advective transport code, MODPATH (version 7) (Pollock,1989,1994).  Details 

of the integration/coupling process and particle tracking are provided below. 

North Florida-Southeast Georgia (NFSEG1.1) MODFLOW Model  

A fully distributed calibrated regional groundwater flow model, North Florida-

Southeast Georgia (NFSEG1.1), developed by St Johns River Water Management 

District and Suwanee River Water Management District, was coupled with the SWAT 

SFRB model to improve the representation of groundwater flow and transport 

processes. NFSEG1.1 is a steady-state model developed to assess regional effects of 

groundwater withdrawals on groundwater levels, stream base flows and spring flows 

and provide a framework for water supply planning and establishment of minimum flows 

and minimum water levels (MFLs) (Durden et al., 2019). A brief description of the 

NFSEG1.1 model is presented here; further details about the conceptualization of 

model structure including data collection and calibration methods can be found at 

https://northfloridawater.com/groundwaterflowmodel.html.  

The spatial domain of the NFSEG1.1 model covers about 155,400 square 

kilometers, encompassing a large area of the Floridan Aquifer System (FAS) in north 

Florida, Georgia, and South Carolina. The model was discretized uniformly in the 

horizontal direction using a 760 m x 760 m grid. The NFSEG1.1 model utilizes seven 

layers to represent the FAS. The hydro stratigraphy in the NFSEG model maps the 

https://northfloridawater.com/groundwaterflowmodel.html
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surficial aquifer (layer 1) and intermediate confining unit (layer 2) as continuous 

throughout the model domain (Figure 4-4). In places where the Floridan Aquifer System 

(FAS) is unconfined, layer 2 exists with a minimum thickness of 3 meters and is 

assigned the properties of the UFA (layer 3). The thickness of the UFA (layer 3) varies 

from 20 m to 140 m; the thickness of the composite semiconfining unit (layer 4) varies 

from 20 m to 180 m; and the thickness of the LFA (layer 5) varies from 50 m to 450 m 

for LFA (see Figure Appendix C-1). The spatial variation of calibrated horizontal 

hydraulic conductivity is shown in Figure 4-5. 

The NFSEG1.1 model utilized annual average recharge and maximum saturated 

evapotranspiration (i.e. potential evapotranspiration remaining after actual surface and 

root zone evapotranspiration) from a catchment scale rainfall-runoff model HSPF 

(Hydrological Simulation Program—FORTRAN, Bicknell et al., 2001) as input forcing. 

Two years were used for steady-state model calibration: 2001(a dry year) and 2009 (a 

wet year). A third year, 2010, was used for model validation. NFSEG1.1 performed well 

in matching the observed head (2% error in 2001 and 1% error in 2009) in calibration 

years for SFRB region. The base flow prediction at Fort White was very good with 1% 

error for both the years 2001 and 2009.  

SWAT-MODFLOW  

The groundwater domain for the SFRB SWAT-MODFLOW model was delineated 

from the NFSEG1.1 model (Figure 4-4) based on the groundwater contributing area to 

the Santa Fe River that was estimated using the potentiometric surface of the UFA and 

previously estimated spring shed boundaries (FDEP 2018;2016; USGS 2011; Santa Fe 

River and Springs Environmental Analysis, Final Report 2020). The sub basins outside 

the topographically defined SFRB were manually delineated based on HUC-10 and 



 

119 
 

HUC-12 basin shape files (Figure 4-6). The SWAT SFRB model was calibrated and 

validated at the sub basin scale based on three stream gauge sites encompassing flow 

from the confined, semiconfined, and unconfined zones (Figure 3-4). For details 

regarding the calibration scheme for the three zones see Chapter 3.  

The confined, semiconfined, and unconfined zones were extrapolated to SWAT-

MODFLOW sub-basins beyond the topographically defined SFRB based on the 

presence/absence of the intermediate confining unit (Figure 4-6). The calibrated relative 

changes with respect to the default Soil Survey Geographic database (SSURGO) 

values for Curve Number moisture condition II (CN2) and for soil parameters such as 

available water capacity (SOL_AWC) and saturated hydraulic conductivity (SOL_K) for 

each zone within the topographically defined SFRB (Table 3-3) were extrapolated to the 

exterior sub-basins in the same zone and used with local default SSURGO values to 

generate appropriate local values. The calibrated absolute values used for the soil 

evaporation compensation factor (ESCO) plant uptake compensation factor (EPCO) 

and groundwater parameters such as groundwater delay parameter (GW_Delay), 

groundwater revap coefficient (GW_REVAP), groundwater recession constant 

(ALPHA_BF) (Table 3-3) were extrapolated directly to the exterior sub-basins by zone.   

SWAT was coupled with NFSEG 1.1 following the procedure described by Bailey 

et al., 2017. To allow transient simulation a specific yield of 0.25 was specified for the 

surficial unconfined layer (Davis and Katz, 2007; Katz et al., 1999; Martin, 2006) and a 

specific storage of 0.00001 m-1 was specified for the remaining confined layers based 

on the literature values (Wong et al., 2012; Swain et al., 2016; Kuang et al., 2020). 

SWAT-MODFLOW was run using a daily time step from the year 2000 to 2018. 
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Streamflow and groundwater head from the coupled transient model were compared 

with the observed flow at the USGS Fort White gauging station and observed 

groundwater levels from observation wells within the SWAT-MODFLOW domain.  

Particle Tracking  

The advective particle-tracking scheme MODPATH (version 7; Pollock, 

1989,1994) was used with SWAT-MODFLOW to compute the contributing area, flow 

paths and travel time distribution for groundwater emerging from the reach of the Santa 

Fe River containing the Devil’s Complex springs system. Particles were tracked 

backwards through time from the river where the Devil’s Complex springs emerge to the 

model boundaries by computing the pore water velocity vector based on the darcy flux 

across each face of a grid cell and the effective porosity (ne) shown in equation 4-1.  

𝑣𝑖 =
−𝐾𝑖 

𝑛𝑒

𝑑ℎ

𝑑𝑥𝑖
                                                                                                  4-1 

Where 𝑣𝑖 porewater velocity in ith direction is, 𝐾𝑖 is hydraulic conductivity in ith 

direction, 
𝑑ℎ

𝑑𝑥𝑖
  is the hydraulic gradient in ith direction and ne is effective porosity. 

Effective porosity is the interconnected porespace of the total porosity that contributes 

significantly to fluid flow with a velocity greater than the average fluid velocity (Horton et 

al., 1987). MODPATH stores the travel time and final location for each particle as it 

crosses a model boundary. From these results the travel time distribution (TTD) for all 

particles and the source area encompassing all particles were determined.  

Particle tracking was performed under steady state conditions in a wet and dry 

year for the Santa Fe River basin. Transient particle tracking requires fluxes to be 

stored in each cell at each time step for each stress period which can be 

computationally intensive. To avoid computationally intensive simulations, steady state 
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particle tracking for a wet (2009) and dry (2001) year were performed, which were the 

same years that were modeled for the NFSEG 1.1. The steady state particle tracking 

under two hydrologically different conditions was conducted to identify how travel time 

distributions and groundwater contributing areas may vary under different recharge 

conditions. To perform the steady state simulation, daily recharge from the transient 

simulation of SWAT-MODFLOW was averaged for each year.  

The backward particle tracking through groundwater was performed by releasing 

100,000 particles (i.e., sufficient particles to construct a smooth travel time distribution) 

in the river grid cells of the SWAT sub basin contributing to Fort White which contains 

the Devil’s Complex springs (Figure 4-7). Particles were distributed among the river 

cells in proportion to the groundwater flux to the cells so that each particle represents an 

approximately equal volume of water.  

Importantly, effective porosity and hydraulic conductivity have a profound 

influence on the estimation of groundwater travel paths and travel times (Basu et al., 

2012). Groundwater travel time is directly proportional to effective porosity and distance 

and inversely proportional to permeability and hydraulic gradient (Horton et al., 1987; 

Stephens et al., 1998). The NFSEG 1.1 model parameterization and configuration did 

not specifically consider karst structures such as fractures and conduit networks located 

in UFA which result in preferential flow pathways with rapid groundwater flow that can 

greatly impact groundwater travel times. For equivalent porous media models, the 

preferntial pathways in karst systems are represented via lowering the effective porosity 

(Rayne et al., 2001) or increasing the hydraulic conductivity (Saller et al., 2013) to 

https://www.sciencedirect.com/science/article/pii/S0022169412006634#b0210
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increase the flow velocity. Both conditions were tested to assess the impact on travel 

time distribution analysis.   

Because of the significant matrix porosity of the limestone, flow in the UFA 

occurs in both the rock matrix and in fractures and conduits (Thayer and Miller, 1984). 

Previous research estimated the effective porosity of the UFA to range from 25% to 

35% (Davis and Katz, 2007; Katz et al., 1999; Budd et al., 2004; Martin, 2006). In this 

study particle tracking was initially simulated assuming a uniform effective porosity of 

0.25 for each model layer and a travel time distribution was calculated and compared 

with the median travel time of ~20 years that has estimated from isotopic and natural 

tracer measurements (Katz et al., 2001; Katz,2004; Katz and Griffin, 2008) and further 

adjusted manualy if required.    

Similarly, the spatial distribution of hydraulic conductivity has a substantial 

influence on groundwater head, flux, groundwater travel time, travel path and 

contributing area. Particle tracking was first simulated using the calibrated NSFEG1.1 

model to analyze the groundwater median age and contribution of flow through each 

layer. The calibrated NFSEG 1.1 model does not specifically consider the preferential 

flow through karst structures in UFA.  To represent the higher preferential flow pathways 

that have been observed in the UFA versus the composite semiconfining unit and the 

LFA, the hydraulic conductivity of layers 3 through 5 (the UFA, composite semi 

confining unit and LFA) were adjusted to produce a median travel time of ~20 years as 

well as allow majority of spring flow sourced from the UFA (Bush and Johnston ,1988; 

Sepulveda et al., 2012; Grubbs et al., 2007). Hydraulic conductivity adjustments in 

layers 3, 4 and 5 were constrained to maintain the calibrated effective conductivity 
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across these layers so that the ability of the model to simulate observed groundwater 

heads and baseflows was not compromised.  

Estimating NO3-N Concentrations at the River using Travel Time Distributions 

The source, fate and transport of NO3-N reaching the river in the Devil’s Complex 

Springs area was analyzed by combining the SWAT-MODFLOW-MODPATH-estimated 

groundwater contributing area and travel time distribution, the SWAT predicted average 

NO3-N concentration leaching to groundwater from each land use (Chapter 3), and a 

first order groundwater denitrification rate of 0.00005 day -1 (~38 year half-life) estimated 

from observations made by Heffernan et al., 2011and Henson et al., 2017 (equation 4-

2).  

 𝐶𝑡 =  
∫ 𝑞(𝑎) ∫ 𝐶𝑜

∞
𝜏=0

 
𝐴

(𝑎,𝜏)𝑒−𝑘𝜏 𝛿(𝑡(𝑎)−𝜏)𝑑𝜏𝑑𝑎

∫ 𝑞(𝑎)𝑑𝐴
 

𝐴

                                                     4-2 

where A is the groundwater contributing area, t(a) is the travel time from source area 

increment da to the river, q(a) is the darcy flux from source area increment da, C0(a,)) 

is the initial concentration from source area increment da  years prior, k is the first 

order denitrification rate, and  () is the dirac delta function representing piston flow 

along the path line (Desouni and Graham, 1995).  

As indicated in chapter 3, a range of practices representing different agricultural 

land uses in the SFRB (row crops, hay, and pasture) were defined based on in-depth 

consultation with stakeholders and Extension agents as well as previous studies in this 

region. Table 3-2 summarizes the range of current management practices for 

agricultural land uses, ranging from high to low N fertilizer and irrigation application. 

Management System 3 (MS3) represents conventional, higher-input practices 

historically applied in the region; MS2 represents improved water and nutrient 
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management approaches adopted more recently (including soil moisture sensors for 

triggering row crop irrigation); and MS1 represents the best management practices that 

are considered economically feasible with currently available technology. For production 

forests, we assumed slash pine forest management with no fertilization, no irrigation, no 

thinning, and a 36-year rotation length. Natural grasses also had no fertilization or 

irrigation. Based on results presented in Chapter 3, the daily NO3-N leaching 

concentration from row crops, pasture, hay, forest, and native grass lands were 

estimated by dividing the SWAT simulated daily mass of NO3-Nleaching from that land 

use (kg NO3-N/ha) by the SWAT simulated daily volume of water recharging the aquifer 

from that land use (mm), applying appropriate unit conversion factors and taking the 

long term average. The resulting average concentrations for all agricultural land uses 

(by management systems), natural grasses and forests are shown in Table 4-1.  

With the SWAT-MODFLOW-MODPATH estimated travel time distributions and 

the SWAT-estimated leaching concentrations, several heuristic experiments were 

carried out to analyze the fate and transport of NO3-N from different land use and land 

management systems to the Devils Springs Complex area in the SFRB (Table 4-2). All 

cases assumed that conventional higher input practices (MS3) were used for all 

agricultural land uses from 1970-2020. Case 1 assumed all agricultural land uses 

continued using MS3 into the future. Case 2 assumed all agricultural land uses shifted 

from MS3 to MS1 after 2020. Since pasture was found to be the highest NO3-N load 

contributor among the agricultural land uses (Chapter 3, Figure 3-13) Case 3 assumed 

that after 2020 all pasture was converted to hay using MS1, and all other agricultural 

landuses shifted from MS3 to MS1. Case 4 assumed that after 2020 pasture was 
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converted to natural grassland to further decrease the NO3-N load (Chapter 3, Figure 3-

13), and all other agricultural landuses shifted from MS3 to MS1. Finally, Case 5 

assumed that all agricultural land uses were converted to slash pine forest after 2020.      

Results and Discussion 

SWAT-MODFLOW Model Performance 

SWAT-MODFLOW-simulated monthly flow at Fort White was in the satisfactory 

to good range Moriasi (2015) (R2=0.68, NSE=0.62, and PBIAS=5.1%), which is 

approximately equivalent to the accuracy of the SWAT-only model presented in Chapter 

3 (Table 3-4). SWAT-MODFLOW simulated daily flow was in the unsatisfactory to good 

range (R2 =0.35, NSE =0.33, and PBIAS=5.1%) (Figure 4-8), which was significantly 

less accurate than the SWAT-only model. These results would likely improve by 

recalibrating the coupled SWAT-MODFLOW model simultaneously rather than directly 

coupling the two previously calibrated models.  

Observed and simulated groundwater head were generally in in good agreement 

other (Figure 4-9) (R2=0.86, PBIAS = -7%), however variation in observed heads were 

often greater than simulated heads, particularly in the confined region. This could be 

due to the absence of the confining unit in some well locations (or puncturing of this 

layer during well construction). Hydrographs for individual wells (Appendix Figures C-2, 

C-3 and C-4) show simulated head in the unconfined region has more variability than in 

the confined region, likely due to the absence of the confining layer and proximity to the 

river.  

Analysis of the SWAT-MODFLOW recharge in comparison to the original NFSEG 

1.1 recharge was carried out for the wet year 2009. SWAT estimated higher recharge 

(percolation from root zone) compared to HSPF, particularly in the unconfined region 
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(Figure 4-10). Both SWAT and the HSPF surface model used North American Land 

Data Assimilation System (NLDAS) historical rainfall data and partitioned rainfall into 

recharge and ET in the soil zone. Notably, SWAT-calibrated soil parameters produced 

high recharge and low ET in the unconfined zone in order to match streamflow at Fort 

White, likely a result of the fact that the SWAT-only model did not consider the entire 

groundwater domain contributing flow to SFRB.  

 Despite the difference in recharge, simulated heads between SWAT-MODFLOW 

and the original NFSEG 1.1 across all grids for year 2009 (wet year) were in good 

agreement (R2=0.95, slope= 1.03, intercept= -0.02) (Figure 4-11) and SWAT-

MODFLOW performed well in matching the observed head (R2=0.83, slope=0.78, 

intercept= 2.06). Differences in head between NFSEG 1.1 and SWAT- MODFLOW 

varied from 5.98 m to -13 m. The range of positive and negative differences span the 

transition from confined to unconfined regions due to differences in recharge between 

HSPF and SWAT. The small differences between SWAT-MODFLOW and NFSEG1.1 

simulated heads, in spite of differences in recharge, may be because MODFLOW uses 

any remaining (unsatisfied) potential evapotranspiration (PET) after evapotranspiration 

from the soil zone to calculate additional evapotranspiration from the aquifer, which 

could compensate for excess recharge in the unconfined region. Overall, the SWAT-

MODFLOW model adequately reproduced observed stream flow and groundwater 

heads. 

Groundwater Travel Time Distribution (TTD) in SWAT-MODFLOW  

With a unifom effective porosity of 0.25 in all layers and the original NFSEG 1.1 

calibrated hydraulic conductivities, the median value of the TTD was more than 200 

years (Figure 4-12), which is nearly 10 times the estimated median age of ~ 20 years for 
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springs discharging to Santa Fe river near Fort White (Katz et al., 2001; Katz,2004; Katz 

and Griffin, 2008). Inspection of the length of time that particles spent in each layer 

(Figure 4-13) showed that more than 50% of particles in this simulation traveled into the 

LFA and stayed for long periods, indicating that the composite semi confining unit (4th 

layer) did not restrict flow between the UFA and LFA. As a result, particles followed a 

long flow path through the LFA before emerging in the springs. In contrast, previous 

tracer experiments (Ellins et al., 1991; Crandall et al., 1999) and modeling studies (Bush 

and Johnston, 1988; Grubbs et al., 2007; Sepulveda et al., 2012) estimated that 

approximately 90% of water contributed to springs comes from the UFA. 

Reducing the effective porosity of the confining unit (2nd layer), UFA, composite 

semi confining unit and LFA to 0.02 (Davis et al., 2010; Yang et al., 2019) in SWAT-

MODFLOW-MODPATH reduced the estimated median age to ~ 20 years (Figure 4-12). 

Groundwater heads and groundwater contributing area remained the same when only 

effective porosity was changed (Figure 4-14) because simulated Darcy fluxes remained 

unaffected. Flow path lines were predominantly from eastern areas of model domain for 

both cases. Hydraulic gradient plays a key role in determining the extent of groundwater 

contributing area (and source of pollutants) while the effective porosity determines how 

fast the pollutant reaches the discharge point. The effect of dry (2001) and wet (2009) 

simulation years had a negligible effect on travel time and the groundwater contributing 

area (Figure 4-15) as hydraulic gradient and flux were not substantially affected by 

differences effective recharge across these years.  

Although the estimated median age of ~20 years was accurately represented by 

lowering the effective porosity to 0.02, ~60% of particles traveled through the LFA which 
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is likely unrealistic. On the other hand, keeping the the effective porosity at 0.25 and 

reducing the hydraulic conductivity of the composite semi-confining unit and LFA by 

100-fold and increasing the hydraulic conductivity in the UFA, keeping the effective 

hydraulic conductivity the same across the layers, reduced median groundwater age to 

~20 years (Figure 4-16) and resulted in no groundwater flowing through the LFA, which 

is in better agreement with previous studies (Figure 4-17). In this case the recharge 

sources contributing older water (>100 years) originate from the large low-gradient parts 

of the Northern Highlands confined region (Figure 4-18) due to travel through the 

confining unit, whereas younger water (<20 years) is from the unconfined region directly 

north and south of the river. The groundwater conributing area with travel time less than 

100 years falls primarily within the unconfined zone of the SFRB (Figure 4-19). 

Travel Time Distribution Based NO3-N Transport 

Using the estimated TTDs from SWAT-MODFLOW-MODPATH with the adjusted 

hydraulic conductivities in layers 3-5, the five heuristic experiments described in the 

methods section were carried out to analyze the fate and transport of NO3-N from 

different land use and land management systems. Persistent use of  conventional 

higher input agricultural practices (MS3) in the future (Case1) results in a steady state 

nitrate concentration for  groundwater emerging from the Devils Springs complex near 

Fort White of ~1.18 mg /L (Figure 4-20) which is within the lower range of average 

measured NO3-N concentrations in Devil’s Complex springs from 2013-2020: Twin 

Spring 0.9-1.3 mg/L, Ginnie Springs 1.0-1.7 mg/L, Devil ‘s Eye 1.4 to 2.0 mg/L, Gilchrist 

Blue Spring 2.0 to 2.4 mg/L (FDEP,2017; Florida Springs Institute, 2020). 

Changing the management systems for row crops, hay, and pasture from MS3 to 

MS1 (Case 2) lowered the NO3-N concentration from approximately 1.1 mg/L in 2020, to 
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0.6 mg/L in 2100. However, this is not sufficient to meet the NNC criteria of 0.35 mg/L 

NO3-N (Figure 4-20). Converting pasture to hay and shifting all management practices 

to MS1 (Case 3) reduced the NO3-N concentration to approximately 0.5 mg/L, which is 

also above the NNC. However, changing pasture to natural grass (Case 4) was able to 

meet the NNC by 2080. Converting all agricultural land uses to forests (Case 5) reduced 

the NO3-N concentration to the NNC by 2055, and to background concentrations of 

approximately 0.1 mg/L by 2100 (Figure 4-20).   

These results are consistent with the SWAT model predictions from Chapter 3 

that predicted that implementing best management practices on current agricultural 

lands would be insufficient to meet the NNC in the Santa Fe River at Fort White.  

Nevertheless, results indicate that a combination of land use change and improved 

agricultural water and nutrient management pactices shows good potential for meeting 

the NNC.  

Conclusions 

A SWAT-MODFLOW-MODPATH model was developed and used to investigate 

the groundwater contributing area, groundwater flow paths and groundwater travel time 

distribution for the Devil’s Complex springs in the Santa Fe River Basin.  Results 

indicated that hydraulic conductivity had a major influence on predicting groundwater 

contributing area, flow path and travel times, whereas effective porosity had primary 

influence on predicting travel times. Differences in mean recharge between a wet dry 

year (2001) and a wet year (2009) did not substantially change estimates of contributing 

area, flow path or travel times. 

Using the original calibrated NFSEG1.1 hydraulic conductivity in the SWAT-

MODFLOW-MODPATH model estimated that more than 50% of the groundwater 
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emerging from springs in the Devil’s Complex area traveled through the LFA.This 

resulted in a median groundwater age of more than 200 years, which is not consistent 

with previous modeling and tracer studies (Ellins et al., 1991; Crandall et al., 1999; 

Sepulveda et al., 2012). Decreasing the hydraulic conductivity for the composite semi 

confining unit (layer 4) and the LFA (layer 5) and increasing the hydraulic conductivity 

for the UFA (layer 3), while keeping the effective hydraulic conductivity across the three 

layers the same as for the original calibrated model, eliminated groundwater traveling 

through the LFA and reduced the estimated median age of groundwater to ~20 years.  

This finding raises questions about how the original NFSEG 1.1 model parameterization 

represents the groundwater flow and travel paths through the FAS and suggests that 

further calibration and validation of the coupled SWAT-MODFLOW model should be 

conducted before combining with the USGS Reactive Transport Model (RT3D).  

Using the predicted travel time distributions from the SWAT-MODFLOW-

MODPATH model with the modified hydraulic conductivity field and an effective porosity 

of 0.25, and land use-specific annual average NO3-N leaching concentrations from the 

SWAT model, the fate and transport of NO3-N to the reach of the Santa Fe River 

containing the Devil’s spring complex was analyzed for a set of land use- land 

management system scenarios. Results indicated that keeping the 2017 land use 

pattern but changing agricultural management systems from conventional practices to 

current best management practices in 2020 would not be sufficient to meet the NNC of 

0.35 mg/L NO3-N established by the Florida Department of Environmental Protection. 

Results showed that if in the year 2020 current row crop and hay land uses were 

converted from conventional to best management practices, and all pasture was 
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converted to native grassland, the NNC could be met by 2080.  If all row crops, hay, and 

pasture were converted to forest in 2020, the NNC could be met in 2055.    

The predictions of nitrate concentration emerging from the Devil’s springs 

complex using SWAT-MODFLOW-MODPATH based TTDs were based on simplifying 

assumptions such as the spatially and temporally uniform nitrate concentration by land-

use, steady state groundwater flows and spatially and temporally constant denitrification 

rate. Chapter 3 showed that nitrate concentrations and water recharging the aquifer 

vary over space and time according to soil type, weather, land use and management 

practices, and it is well known that denitrification rates are dependent on dissolved 

oxygen and organic matter concentrations in the aquifer. Therefore, relaxing these 

assumptions could improve model utility. Similar particle tracking studies to estimate 

groundwater travel time distribution, recharge source contributing area, and fate and 

transport of nitrate in the Ichetucknee and Hornsby springsheds should be conducted to 

extend the analysis to other impaired springs in the Santa Fe river basin. 
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Table 4-1. NO3-N Concentration (mg/L) from various land uses by management 
systems 

 

  MS3 MS2 MS1 

Row Crops 8.3 5.5 2.5 

Hay 4.5 3.4 2.8 

Pasture 9.2 6.4 4.7 

Slash Pine* 0.3 

Grass* 0.3 

                   *Denotes constant for all systems  

                                             

Table 4-2. Summary of case studies representing assumed current and future practices.    

Experiments Current Practices 

(1970-2020) 

Future Practices 

(2020-2100) 

Case 1                                      

Row crops: MS3 

Hay:            MS3 

Pasture:      MS3 

Row crops: MS3 

Hay:            MS3 

Pasture:      MS3 

Case 2 

Row crops: MS3 

Hay:            MS3 

Pasture:      MS3 

Row crops: MS1 

Hay:            MS1 

Pasture:      MS1 

Case 3 

Row crops: MS3 

Hay:            MS3 

Pasture:      MS3 

Row crops: MS1 

Hay:            MS1 

Pasture*:     Hay MS1 

Case 4 

Row crops: MS3 

Hay:            MS3 

Pasture:      MS3 

Row crops: MS1 

Hay:            MS1 

Pasture*:    Grass  

Case 5 

Row crops: MS3 

Hay:            MS3 

Pasture:      MS3 

Row crops*: Slash Pine 

Hay*:            Slash Pine 

Pasture*:      Slash Pine 

*Denotes changes in landuse along with land management practices.
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Figure 4-1.  Location map for the Suwanee River Basin and its tributary Santa Fe River Basin with the underlying Floridan 
aquifer system. (A) Extent of Floridan Aquifer System. (B) Hydrogeological features of Santa Fe River Basin 
(SFRB). (C) Santa Fe River Basin (SFRB) with topography, stream network and GD (gauge discharge) sites. 
http://floridanwater.org/issues/ 

http://floridanwater.org/issues/
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Figure 4-2. Geologic cross-section across the Santa Fe River Basin from northwest to south-east (Ref: Todd R. Kincaid, 
PhD, 2007). (A) Geologic cross-section across the Santa Fe River Basin. (B) Stratigraphic sequence 
underlying the Santa Fe River Basin, north-central Florida.



 

135 
 

 
 
Figure 4-3.  Santa Fe River BMAP and PFA boundaries. (A) PFA boundaries. B) High recharge area to the Floridan 

aquifer (≥10 in/yr) based on USGS 2002 methodology. (C) Aquifer vulnerability in Alachua County based on 
Florida Aquifer Vulnerability Assessment (FAVA) model. (Reference: FDEP, 2018) 

 
 
 
 
 
 



 

136 
 

 

 

Figure 4-4. Santa Fe River Basin (SFRB) SWAT-MODFLOW domain (Left), 3D diagram of layers within the NFSEG 
model for SFRB region (Right), 3rd layer is Upper Floridan Aquifer (UFA), and 5th layer is Lower Floridan 
Aquifer (LFA).
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Figure 4-5. Spatial distribution of horizontal hydraulic conductivity (Kx (m/day)) for 2nd, 3rd, 4th, and 5th layer in log scale.  
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Figure 4-6. Extended sub basins outside the Santa Fe River Basin. (A) Sub basins for entire domain. (B) Hydrogeological 
zone across Santa Fe River Basin. (C) Calibrated parameters of SFRB subbasins applied to the subbasins 
outside of SFRB.  

A B 
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Figure 4-7. Santa Fe River within the Ft White subbasin where particles were released. 
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Figure 4-8. Comparison of the daily and monthly simulated vs. observed streamflow at Fort White For SWAT-MODFLOW. 

 

R2=0.35 

NSE=0.33 

PBIAS (%) =5.1 

R2=0.68 

NSE=0.62 

PBIAS (%) =5.2 
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Figure 4-9. Comparison of simulated and observed hydraulic head in UFA for each observation well. (A) location of Cody 
scarp, observation wells and unconfined zone. (B)The big dots are the mean values over the time-period and 
the small dots represent all the values over time. (C) Observed vs simulated average head.  

A B C 
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Figure 4-10. Recharge from SWAT-MODFLOW and NFSEG 1.1 for wet year 2009. 
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Figure 4-11. Simulated head of NFSEG 1.1 Vs SWAT-MODFLOW and the difference in head. (A) Simulated head SWAT-

MODFLOW Vs NFSEG 1.1). (B) Simulated head (UFA) for SWAT-MODFLOW vs NFSEG1.1 across all 
model grids for year 2009.  (C) Observed head vs simulated SWAT-MODFLOW for year 2009.

A 

B C 
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Figure 4-12. Travel time distribution (TTD) for different values of effective porosity for 
SWAT-MODFLOW-MODPATH.  
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Figure 4-13. Number of particles per layer with respect to time for SWAT-MODFLOW-

MODPATH for effective porosity 0.25 for each layer. Due to very small 
number of particles entering 6th and 7th layer the graphs for these two 
layers are not visible.  Particles remain in 1st layer for a very short time so 
are not clearly visible. 
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Figure 4-14. Groundwater contributing area map. A) all layers 0.25 effective porosity. B) 0.02 effective porosity for all 
layers except 1st (T= years).  

A B 
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Figure 4-15. Travel time distribution (TTD) for SWAT- MODFLOW-MODPATH models for year 2001 and 2009 with 
effective porosity 0.02 for 2nd,3rd, 4th, and 5th layer. 
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Figure 4-16. Travel time distribution (TTD) of SWAT-MODFLOW-MODPATH models with adjusted hydraulic conductivity 
in layers 3,4, and 5. 
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Figure 4-17. Number of particles per layer with respect to time for SWAT-MODFLOW-
MODPATH with adjusted hydraulic conductivity.  
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Figure 4-18. Spatial distribution of groundwater contributing area and simulated UFA head contour lines. (T=years) 

 
 
 
 
 
 
 
 
 
 

SWAT-NFSEG 1.1 -K change (2009) SWAT-NFSEG 1.1 -K change (2001) 
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Figure 4-19.  Flow path lines for SWAT-MODFLOW-MODPATH over SWAT SFRB sub basins (Left). Hydrogeologic 
zones of SFRB with gauge stations (Right). 
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 Figure 4-20. Break though curve of total NO3-N concentration with denitrification for different case studies. 
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   CHAPTER 5  
CONCLUSIONS, CONTRIBUTIONS AND RECOMMENDATIONS FOR FUTURE 

REASEARCH 

 

Nitrate-nitrogen (NO3-N) loading to groundwater is a chronic problem worldwide 

due to its detrimental effects on the ecological health of springs, streams, and lakes as 

well as on human health. The NO3-N pollution issue is especially critical in karst aquifers 

because of their susceptibility to leaching of contaminants from the land surface. The 

Upper Floridan aquifer (UFA), one of the most productive karst aquifers in the world, is 

a major source of public water supply and irrigation in north and central Florida and has 

experienced elevated nitrate concentrations in its groundwater and springs. In response 

to these increasing NO3-N concentrations a Numeric Nutrient Criteria (NNC) of 0.35 

mg/L NO3-N has been set for groundwater emanating from UFA springs. Total 

Maximum Daily Loads (TMDLs) estimated to achieve the NNC, and Basin Management 

Action Plans (BMAPs) required to meet the TMDLs, have been established for UFA 

springs not meeting the NNC. 

The Santa Fe River Basin (SFRB) overlying the UFA in north central Florida, 

USA provides an excellent location in which to investigate causes and potential 

solutions for the UFA nitrate enrichment problem. The SFRB spans a transition zone 

between confined and unconfined regions of the UFA. Numerous springs that feed the 

unconfined portion of the Santa Fe River have NO3-N concentrations above the NNC. 

The Santa Fe River BMAP (FDEP, 2018) has estimated that a 65% reduction in NO3-N 

load to groundwater will be required to achieve the NNC. The complex hydrogeological 

features of the SFRB, magnitude of the nitrate enrichment problem, and good 
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availability of hydrologic and water quality data, provided a good platform to conduct this 

study. 

One of the key sources of NO3-N pollution to the UFA in general, and the SFRB 

in particular, is the application of synthetic N fertilizer to enhance agricultural production. 

Many Best Management Practices (BMPs) for N fertilizer and irrigation have been 

tested at the field scale with the goal of maintaining yields while reducing leaching. 

However, these short duration experiments do not provide information on the 

effectiveness of the BMPs over a wide variety of weather conditions or soil types.  In 

addition, these experiments often do not measure the reduction in leaching and other 

environment losses associated with BMP adoption and therefore cannot estimate the 

effectiveness of widespread adoption of BMPs on receiving water bodies such as 

aquifers, springs, and rivers  

The objectives of this dissertation were to utilize a combination of field-scale and 

watershed scale hydrologic models to 1) leverage the available experimental and 

observational data in the SFRB to quantity the nitrate leaching reductions that can be 

expected from the adoption of improved agricultural nutrient and irrigation management 

practices in the SFRB; 2)  estimate the impact of these leaching reductions on nitrate 

loads to and nitrate concentrations in the Santa Fe River; and 3) determine the most 

vulnerable regions of the SFRB where changes in practices could be targeted to 

improve spring and river concentrations, and estimate the time required to observe 

reductions in river nitrate concentrations as a result of potential changes in practices in 

these vulnerable regions.  
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 Based on these objectives, major research findings and suggestions for further 

investigation are summarized below. 

Objective 1. Quantify the nitrate leaching that can be expected from the adoption 

of improved agricultural nutrient and irrigation management practices in the SFRB. 

• The agro-ecohydrological model, Soil and Water Assessment Tool (SWAT) was 
successfully used at the field scale to simulate impacts of alternative fertilizer and 
irrigation management practices on crop yield, irrigation demand and nitrate leaching 
for a three-year corn-peanut rotation BMP experiment conducted at the North Florida 
Research and Education Center – Suwannee Valley (NFREC-SV), near Live Oak, 
Florida. 

• SWAT simulations showed that shifting from conventional calendar-based irrigation 
practices and high corn fertilizer rates (~336 kg N/ha) to Soil Moisture Sensor (SMS) 
based irrigation practices with fertilization rates of 246 kg N/ha, a rate close to the 
UF/IFAS N recommendation (235 kg N/ha), reduced nitrate leaching by an average 
45% over the 1982-2018 weather record, with no reduction in yield for corn or 
peanut.   

• SWAT simulations showed that cultivating a rye cover crop between corn and 
peanut cropping seasons could reduce leaching by an additional ~50kg N/ha 
compared to leaving the field fallow between cropping seasons, for a total 65% 
reduction.  

• Successful use of SWAT to simulate the outcomes of field scale corn-peanut rotation 
experiment built confidence in its further application at the watershed scale.  

• Future work should focus on long-term evaluation of the effectiveness of BMPs 
using future climate data for better predictions of yield, as well as field experiments 
that incorporate cover crops to confirm and measure reduction in N leaching during 
fallow periods.  

Objective 2. Estimate nitrate leaching reductions across cropping systems, 

management practices and soil types in the SFRB, and resulting impacts on nitrate 

concentrations in the Santa Fe River. 

• A SWAT model for the Santa Fe river basin was developed and successfully 
calibrated and validated for daily stream flow, monthly stream nitrate load, and 
annual geometric mean stream nitrate concentration.  

• Leaching and denitrification losses across the watershed varied from 0 to >100 kg 
N/ha/year, with considerably more leaching occurring in the unconfined than the 
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confined region. Denitrification occurred throughout the watershed, with the highest 
rates in the confined region due to higher available water content. 

• Row crops and pasture had the highest leaching and denitrification losses per unit 
area in both the confined and unconfined zones, with the unconfined region having 
slightly higher average leaching losses and slightly lower average denitrification 
losses than the confined region. 

• Pasture contributed the greatest total load to the aquifer (1541 tons/year, 55%) due 
to the relatively large land area assigned to pasture (12%) and high leaching rates 
(~52 kg N/ha/year). 

• Shifting the corn-peanut row crop rotation from conventional calendar-based 
irrigation practices with high corn fertilization (~336 kg N/ha) and no cover crops to 
SWAT based auto irrigation practices with fertilization rates of 246 kg N/ha, a rate 
close to the UF/IFAS N recommendation (235 kg N/ha) and a rye cover crop 
reduced nitrate load from row crops to the aquifer by 65% over the entire watershed, 
consistent with field scale simulation outcomes. 

• Shifting all agricultural lands uses (row-crop, pasture, hay) from conventional 
practices to BMPs reduced the nitrate load in the Santa Fe River by 31%, but was 
insufficient to achieve the NNC of 0.35 mg/L NO3-N. 

• Converting the entire watershed into slash pine forest reduced the nitrate load to the 
river by ~80% over the current land uses with conventional practices, which was 
sufficient to achieve the NNC. 

• A major limitation of this study is the fact the SWAT cannot simulate groundwater 
contributions to rivers that originate outside its surface watershed boundary, a 
phenomenon thought to occur in the unconfined region of the SFRB. As a result, 
calibrated soil parameters in the unconfined region of the SFRB had to be adjusted 
to reduce evapotranspiration and increase recharge to reproduce observed 
streamflow. Future validation of SWAT with satellite soil moisture data could 
evaluate the validity of these soil parameters. In addition, the groundwater residence 
times, and groundwater nitrate half-life calibrated for SWAT are unreasonably short.  
Coupling of SWAT with MODFLOW, MOPATH and/or RT3D to allow groundwater 
contributions from outside the surface watershed boundary, and to more rigorously 
simulate groundwater flow, transport and transformation processes, is 
recommended.  

• Another limitation associated with this study was the lack of measured data to 
calibrate and validate the biogeochemical parameters controlling the competition 
between NO3-N leaching and denitrification in the soil zone, and denitrification within 
the aquifer. In this study constraints were imposed on these parameters based on 
prior knowledge of the biophysical processes occurring at the watershed scale, 
however these assumptions should be evaluated with new experiments and 
observations. For example, measured denitrification and leaching rates from 
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different land uses under different soil conditions could corroborate or improve 
parameter calibration.  

  Objective 3.  Determine the most vulnerable regions of the SFRB where 

changes in practices could be targeted to reduce nitrate concentrations in springs and 

rivers in the unconfined region of the SFRB. Estimate the time required to observe 

reductions in river nitrate concentrations as a result of potential changes in practices in 

these vulnerable regions. 

• SWAT recharge and NO3-Nloading were used to drive the calibrated North Florida-
Southeast Georgia (NFSEG) MODFLOW model. The resulting groundwater fluxes 
were used in MODPATH to investigate the groundwater contributing area and 
groundwater travel time distribution (TTD) for the Santa Fe River near Fort White. 

• The groundwater flow path and groundwater contributing area to the Santa Fe River 
near Fort White were sensitive to the spatial distribution of hydraulic conductivity in 
the NSFEG model. The groundwater TTD was sensitive to both the spatial 
distribution of hydraulic conductivity and effective porosity. The groundwater flow 
path, groundwater contributing area and TTD were less sensitive to the spatial 
distribution of recharge.  

• The calibrated hydraulic conductivities in the NFSEG 1.1 model estimated that a 
large percentage (60 to 70%) of groundwater emerging in the Santa Fe River near 
Fort White travelled through the Lower Florida Aquifer (LFA), resulting in long 
median travel times (~100 years). These predictions are not consistent with 
published studies of spring travel paths or groundwater travel times (cite USGS, 
Katz, 2001; Katz et al., 2004). Reducing the hydraulic conductivity of the middle 
confining unit and the LFA, while increasing the hydraulic conductivity of the UFA to 
maintain the effective hydraulic conductivity of the three layers in the calibrated 
NFSEG model, decreased the percentage of water travelling through the LFA to 
20%, increased the percentage of water traveling through the UFA to ~80%, and 
decreased the median groundwater travel time to ~200 years, findings that are more 
consistent with published studies.  

• Scenario studies estimating the fate and transport of NO3-N from the groundwater 
contributing area to the Santa Fe River using travel-time based solute transport 
simulations showed that keeping the existing land use pattern but changing the 
agricultural management systems from conventional practices to current best 
management practices after 2020, would not be sufficient to meet the NNC of 0.35 
mg/L NO3-N established by FDEP. However, converting all pastureland to native 
grassland and changing the conventional practices of row crops and hay to current 
best management practices could meet the NNC by 2080. Furthermore, if all row 
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crops, hay, and pasture were converted to forest in 2020 the NNC could be met in 
2055. 

• NFSEG calibrated parameters need to be further evaluated with additional field data 
to improve the reliability of contaminant transport modeling using SWAT-
MODFLOW-RT3D. 
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APPENDIX A 
CHAPTER 2 ADDITIONAL FIGURES 

Table A-1. Fertilizer composition applied at different corn growth stages for System 1 
(corn grown in 2015 and 2017). 

 

  
Corn Growth Stage Fertilizer Composition Element (%) 

    At Planting ~0 DAP Starter 16-0-0 N 

  
    

Ammoniacal 
N 

8.6 

      Nitrate N 2.47 

      Urea N 4.93 

  
V3 (3 leaves with visible collars) 

~15 DAP 
1st Granular (33-0-0) N 

  
    

Ammoniacal 
N 

16.49 

      Nitrate N 16.51 

  
V6(6 leaves with visible collars) 

~30DAP 
2nd Granular (33-0-0) N 

  
    

Ammoniacal 
N 

16.49 

      Nitrate N 16.51 

  

V8-VT (8 leaves with collars to 
tasseling stages) ~37 DAP to 

~52 DAP 

1st -4th Liq. Side-
dress.  *A total 
of 4 liquid side 

dress 
applications at 
week interval 

were performed 
between V8 
and before 
tasseling 

(28-0-0) N 

  
  

Ammoniacal 
N/ 

8.73 

    Nitrate N 6.42 

  

  Urea N 12.85 

 
              *DAP (Days after planting). 
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Table A-2. Summary of data collection types and collection methods. 
  

Soil data Sampling location Sampling frequency 

Soil Texture: % clay, 
silt and sand 
Bulk density (gm/cm3) 
 

A total of 9 samples were 
randomly selected across the field 
experiment 

At the beginning 
of experiment, 
pre-planting 

Soil moisture 

storage (mm) 

Total soil moisture storage (0-
900 mm) was collected using 
one capacitance probe per 
plot. Each probe has 9 
sensors placed every 100 
mm (from 50 mm to 850 mm) 
providing soil moisture 
storage for soil profile. 

 

Every 30 min during 

crop growing seasons 

Gravimetric water 

content  

Every plot1 Biweekly during crop 
season and monthly 
after harvest 

Soil NO3-N  Every plot at four depths (0-150, 
150-300, 300-600 and 600-900 
mm). Total nitrate-N in the soil 
profile was summed across all 
depths 

Biweekly during crop 
season and monthly after 
harvest 

Crop Data Replicates per treatment Sampling frequency 

In season 
aboveground 
biomass and N 
content 

SMS irrigated plots At crop key growth 

stages 

Final 
aboveground 
biomass and N 
content 

Every plot1 At the end of the crop 

growing season 

Yield 
Every plot1 

Annual (at the end of 

crop season). 
1 Every plot means samplings were performed in all irrigation and N fertility rate 

treatments. 
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Table A-3. Soil properties collected from soil sampling across experimental site (system 
2 & 1). 

      System 2 (Peanut-Corn Rotation) 

Depth 
(mm) Texture 

Bulk 
Density(gm/cm3) 

Clay 
(weight %) 

Silt  
(weight  
%) 

Sand 
(weight 
%) 

Organic 
Carbon 
(weight %) 

0-150 Fine sandy 1.5 2.5 3 94.5 0.53 

150-300 Fine sandy 1.5 2 2 96.0 0.41 

300-600 Fine sandy 1.5 1.4 2.3 96.3 0.28 

600-900 Fine sandy 1.5 1.7 2.3 96.0 0.22 

    System 1 (Corn-Peanut Rotation)     

Depth 
(mm) Texture 

Bulk 
Density(gm/cm3) 

Clay  
(Weight %) 

Silt  
(weight 
 %) 

Sand  
(weight 
%) 

Organic 
Carbon 
(weight %) 

0-150 Fine sandy 1.5 1.7 1.7 96.6 0.76 

150-300 Fine sandy 1.5 1.4 1.7 97.0 0.67 

300-600 Fine sandy 1.5 1.7 1.7 96.6 0.57 

600-900 Fine sandy 1.5 1.4 1.3 97.0 0.34 
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Table A-4. Calendar irrigation schedule for corn and peanut. 
 

Corn 

DAP (Days 
After Planting) 

Grower Irrigation Rules                                           
Rainfall Condition 

0-30 DAP Consisted 12.7 mm/wk irrigation for the 
first 30 days after planting (DAP) with 
irrigation event of 12.7 mm in a day 

Skip the irrigation if rainfall 
event is > 12.7 mm.  

31-39 DAP Beginning on 31 DAP, a target amount 
of 38 mm/wk with irrigation event of 
12.7 mm in a day 

One Irrigation skip if 12.7-19 
mm rainfall occurs, and two 
irrigations skip if >19 mm of 
rain occurs 

40-59 DAP For 40-59 DAP a 50 mm/wk target with 
irrigation events of 12.7 mm/day. 

One Irrigation skip if 12.7-19 
mm rainfall occurs, and two 
irrigations skip if >19 mm of 
rain occurs 

60-105 DAP For 60-105 DAP a 50 mm/wk target 
with irrigation events of 12.7 mm/day. 

One Irrigation skip if 12.7-
25.4 mm rainfall occurs. 
Two irrigations skip if >25.4 
mm of rain occurs.  

106-115 DAP  Around 105 DAP at full dent stage, 
weekly irrigation targets of 41 mm/wk 
for one week with irrigation event 12.7 
mm/day. 
20mm/wk for another week until finally 
irrigation terminates approximately 115 
DAP with irrigation event 12.7mm/day 

One Irrigation skip if 12.7-
25.4 mm rainfall occurs. 
Two irrigations skip if >25.4 
mm of rain occurs. 
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Peanut Irrigation Rules  Rainfall condition  

0-30 

DAP 

Consisted of zero irrigation for the first 

30 days after planting (DAP) unless 

severe windy conditions that caused 

blowing sand to burn the plants.  

 

30-45 

DAP 

Beginning on 31 DAP, a target amount 

of 25.4 mm/wk with irrigation event of 

10.2 mm or larger (Growers apply 

10.2mm/day) 

One Irrigation skip if 10.2-19 mm 

rainfall occurs, and two irrigations skip 

if >19 mm of rain occurs. 

45-65 

DAP 

A target amount of 41 mm/wk with 

event of 10.2 mm/day 

 

One Irrigation skip if 10.2-19 mm 

rainfall occurs, and two irrigations skip 

if >19 mm of rain occurs. 

65-80 

DAP 

A target amount of 41 mm/wk with 

event of 10.2 mm/day 

 

One Irrigation skip if 10.2-19 mm 

rainfall occurs, and two irrigations skip 

if >19 mm of rain occurs. 

80-115 

DAP 

A target amount of 50 mm/wk with 

event of 10.2 mm/day. 

 

One Irrigation skip if 10.2-25.4 mm 

rainfall occurs. Two irrigations skip if 

>25.4 mm of rain occurs. 
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Figure A-1. Observed and simulated total soil moisture in root zone (900 mm) during corn-peanut-corn growing seasons. 

(A) SMS-Medium, (B) Calendar-Medium, and (C) Rainfed-Medium for System 1. Error bars correspond to the 
standard deviation of measured data. 

A 

B 

C 



 

165 
 

 
 

Figure A-2. Observed and simulated total soil moisture in root zone (900 mm) during crop seasons. (A) SMS-Low, (B) 
Calendar-Low, and (C) Rain fed-Low for system 1. Error bars correspond to the standard deviation of 
measured data. 

A 

B 
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Figure A-3. System 1 observed vs simulated soil nitrate in entire root zone (900mm) for medium fertility treatments 
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Figure A-4. System 1 observed vs simulated soil nitrate in entire root zone (900mm) for low fertility treatments.  
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Figure A-5. Long term simulated seasonal leaching during crop rotation. (A) corn and (B) peanut growing seasons, and 
during main crops growing seasons with intercropping fallow or rye as cover crop (i.e. (C) corn-fallow/cover 
crop- and (D) peanut-fallow/cover crop). Different letters indicate significant difference at α = 0.05 level.

B 

C 

D 
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Figure A-6. Observed and simulated total soil moisture in root zone during crop seasons. (A) SMS-High, (B) Calendar-

High, and (C) Rainfed-High for system 2. Vertical bars correspond to the standard deviation of measured data.      

A 

B 
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Figure A-7. Observed and simulated total soil moisture in root zone during crop seasons. (A) SMS-Medium, (B) Calendar-

Medium, and (C) Rainfed-Medium for system 2. Vertical bars correspond to the standard deviation of 
measured data.   

A 

B 
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Figure A-8. Observed and simulated total soil moisture in root zone during crop seasons. (A) SMS-Low, Calendar-Low (b) 
and Rainfed-Low(c) for system 2. Vertical bars correspond to the standard deviation of measured data.  
Experimental variation is more in the year 2015 as compared to rest of the years.    

A 

B 
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Figure A-9. Simulated Vs Observed above ground biomass dynamics for SMS-High, SMS-Medium, and SMS-Low 
(System 2). The experimental variation represented as min and max is within one standard variation.



 

173 
 

 
 

  

  

Figure A-10. Simulated Vs Experimental variation of System 2 biomass and yield. Model 
performance statistics evaluated were NSEM, PBIAS (%) and RMSEM 
(kg/ha). 2017 peanut biomass and yield collection had discrepancies due to 
hurricane.  2015 peanut yield was not measured for all plots (Zamora et al., 
2018, 2020).

NSEM= -16.67 

PBIASM= -67 

RMSEM= 5052 
 

 
 
 

NSEM= 0.72 

PBIASM= -5 

RMSEM= 2106.7 
 

 
 
 

NSEM= 0.73 

PBIASM= 3.5 

RMSEM= 429.4 
 

 
 
 

NSEM= 0.96 

PBIASM= -1.9 

RMSEM= 388.8 
 

 
 
 

NSEM= -22.7 

PBIASM= -24 

RMSEM= 1474 
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Figure A-11. Simulated Vs Experimental Nitrogen uptake trend for system2. 
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Figure A-12. Simulated Vs Experimental variation of System 2 Nitrogen uptake. 
Model performance statistics evaluated were NSEM, PBIAS (%) and 
RMSEM (kg/ha). 
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Figure A-13. System 2 simulated Vs observed soil nitrate in root zone (900 mm) for high fertility treatments.
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Figure A-14. System 2 simulated Vs observed soil nitrate in root zone (900 mm) for medium fertility treatments. 
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     Figure A-15. System 2 simulated Vs observed soil nitrate in root zone (900 mm) for low fertility treatments.
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APPENDIX B 
CHAPTER 3 ADDITIONAL FIGURES  

 
 
Figure B-1. Simulated and observed daily streamflow duration curve. A) Worthington Spring B) Fort White C) Hildreth. 
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Figure B-2. Spatiotemporal (all row crop HRUs (2000-2018)) corn and peanut yield in comparison to experimental data 

(corn-peanut-corn rotation from 2015-17, Zamora-Re et al., 2018).  
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Figure B-3. Spatiotemporal (all row crop HRUs (2000-2018)) corn and peanut N uptake in comparison to experimental 
data (corn-peanut-corn rotation from 2015-17, Zamora-Re et al., 2018).  
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APPENDIX C 

CHAPTER 4 ADDITIONAL FIGURES  

 

 
Figure C-1. Thickness of UFA (3rd layer), confining unit (4th layer) and LFA (5th layer) in NFSEG model. 

 
 



 

183 

 
 
Figure C-2. Observation wells in confined and unconfined region with subbasins. 
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Figure C-3. Observation vs simulated groundwater head of wells in confined region.  
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 Figure C-4. Observation vs simulated groundwater head of wells in unconfined region.  
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