

Florida Regional Modeling Simple Scenarios

UF Regional Modeling Team:

Wendy Graham, David Kaplan, Dogil Lee, Nathan Reaver, Rob de Rooij Damian Adams, Christa Court, Unmesh Koirala

United States National Institute Department of Food and Agriculture Agriculture

Biophysical Modeling Framework

Bailey et al, 2016

SWAT (USDA)

- Driven by:
 - Climate, land cover, land and water management, soils, topography
- Simulates:
 - Plant growth, water & nutrient uptake, yield
 - Root zone water flow, nutrient transport
 - Overland water flow and nutrient transport
 - Stream stage, flow and nutrient transport
 - Recharge and nutrient leaching to groundwater

MODFLOW-MODPATH-RT3D (USGS)

- Driven by:
 - Recharge, nutrient leaching, stream stage, groundwater pumping
- Simulates:
 - Groundwater levels, flows, nutrient transport
 - Groundwater and nutrient exchange with streams, springs

Regional Scale Modeling Domain

Santa Fe River Basin

Hydro-geomorphic Characteristics

Aquifer levels in UFA

"Simple Scenarios"

Santa Fe River Basin 2017 Land Use Map

Scenario	Land use	Management			
All Ag MS 3 row crops: corn-peanut forest: slash pine	2017	All Ag (row crops, hay, & pasture) uses MS 3; Forests use MS1			
All Ag MS 2 row crops: corn-peanut forest: slash pine	2017	All Ag (row crops, hay, & pasture) uses MS 2; Forests use MS1			
All Ag MS 1 row crops: corn-peanut forest: slash pine	2017	All Ag (row crops, hay, & pasture) uses MS 1; Forests use MS1			
All Ag to Forest forest: slash pine	2017 except Ag	Forests use MS1			
Forest 36% Wetland 16% Row Crops 5% Hay 4% 9 Pasture 12% 9 Water 1% 0 Urban and Septic Tanks 7% 5hrubland and Grass 19%					

Recall: FL Farm/Forest Modeling Results

MS1: Most efficient irrigation, lowest N rate, rye cover

MS2: Efficient irrigation, medium N rate, oat cover crop

MS3: Least Efficient irrigation, highest N rate, no cover crop

Florida Simple Scenarios: Nitrate Leaching Load

- Pasture is largest load contribution for MS3 due to large land area and relatively high load per unit area
- Row crops have highest load per unit area but relatively small area, 2nd largest load contribution for MS3
- Forest has lowest load per unit area but large land area, relatively large portion of total load

Florida Simple Scenarios: Aquifer Pumping

- MGD = Million Gallons per Day
- Assumed all agricultural land (except hay and pasture) is irrigated corn-peanut rotation
- Pumping shown for the Santa Fe River surface basin only

Florida Simple Scenarios: Net Recharge

- Net Recharge is similar between MS 1-3 since irrigated row crops are a small portion of Santa Fe River surface basin
- Conversion of all agricultural lands to slash pine MS1 <u>reduces net recharge</u> even though agricultural pumping removed due to high slash pine MS1 evapotranspiration

- MGD = Million Gallons per Day
- Streamflow is similar between MS 1-3 since irrigated row crops are a small portion of Santa Fe River surface basin
- Conversion of all agricultural lands to slash pine MS1 <u>reduces streamflow</u> even though agricultural pumping removed due to high slash pine MS1 evapotranspiration

These FACETS results represent work in progress and are not suitable for public distribution.

SWAT-MODFLOW-MODPATH: Particle Tracking

h[m] t [yr] 100 30 27 90 80 24 70 21 18 60 15 50 12 40 30 9 20 6 10 0 0 Water recharging aquifer in dark blue area takes up to 10 years to emerge in springs **Springshed**

Groundwater Contributing Area to Santa Fe River near Fort White (Devil's Eye Complex & Poe Springs) Median travel time for groundwater emerging from springs ~20 years

It will take decades to see full water quality impacts of changes in land-use and management

<u>Travel time</u> to reach Devil's Complex Springs <u>Water level</u> in Upper Floridan Aquifer

These FACETS results represent work in progress and are not suitable for public distribution.

SWAT-MODFLOW-MODPATH: Particle Tracking

Groundwater Contributing Area to Santa Fe River near Fort White (Devil's Eye Complex & Poe Springs) Land Use in Groundwater Contributing Area

→ Similar to Santa Fe Surface Basin Land Use, slightly higher row crops & hay.

SWAT-MODFLOW-MODPATH Simple Scenarios Nitrate Transport to Devil Complex Springs

	Scenario
MS3: corn- peanut	Row Crops, Hay, Pasture: MS3 1970-2100 Slash Pine: MS 1 1970-2100
MS2: corn- peanut	Row Crops, Hay, Pasture: MS3 1970-2020 Row Crops, Hay, Pasture: MS2 2020-2100 Slash Pine: MS 1 1970-2100
MS1: corn- peanut	Row Crops, Hay, Pasture: MS3 1970-2020 Row Crops, Hay, Pasture: MS1 2020-2100 Slash Pine: MS 1 1970-2100
All Slash Pine MS1	Row Crops, Hay, Pasture: MS3 1970-2020 Row Crops, Hay, and Pasture to Slash Pine: 2020- 2100 Slash Pine: MS 1 1970-2100

- Recall no urban loads included in simple scenarios
- Changing from MS3 → MS2 → MS1 → Forest reduces nitrate in groundwater emerging from springs, consistent with leaching % reduction
- Long lag time (~30 years) to see full impacts of reduction

Economic Modeling Framework - IMPLAN

Figure: Flowchart showing direct, indirect and induced impacts estimated by IMPLAN within a regional economy

FL Simple Scenarios: Regional Economy (Employment)

- Row crops contributed the highest number of jobs in the region. MS3 slightly more than MS 1&2
- Hay showed large decrease in employment from MS 3 to MS 1 (due to reduced # cuttings)

FL Simple Scenarios: Regional Economy (Value-Added)

- Pasture contributed the highest value-added in the region.
- Hay showed decrease in value-added from MS 3 to MS 1

FL Simple Scenarios: Regional Economy (State/local tax)

- Tax revenue generated for state and local government from employee compensation, proprietor income, production and imports, households, and corporations.
- Slightly higher tax generation under MS1 as compared to MS 2&3.

Summary

RECALL: ROW CROPS=

		% change	% change	% change
	Metric	All Ag MS3 ->All Ag MS2	All Ag MS3 ->All Ag MS1	All Ag MS3 ->forest
WATER QUALITY	Total Nitrate Leaching load	-19	-38	-64
	Nitrate Concentration in Devil Mills Complex Springs	-18	-43	-68
WATER QUANTITY	Aquifer pumping	-29	-31	-57
	Net recharge		0.8	-5
	Streamflow	1.1	1	-4.7
REGIONAL ECONOMY	Employment	-7	-17	TBD
	Value added	-1	-5	TBD

arise and

For more information http://Floridanwater.org

Home About Issues Modeling Stakeholder Engagement Extension News Contact Log-In

The Floridan Aquifer Collaborative Engagement for Sustainability (FACETS) project is a Coordinated Agricultural Project funded by the USDA National Institute of Food and Agriculture. The FACETS project brings scientists and stakeholders together in a participatory process to develop new knowledge needed to explore tradeoffs between the regional agricultural economy and environmental quality; understand changes needed to achieve agricultural water security and environmental protection; and to implement desired changes.