

Transitioning from Farm-scale to Regional-scale Models

United States Department of Agriculture

National Institute of Food and Agriculture

Reminder: The PROCESS

Management Systems

Management Systems: Florida

Current *Production Systems*

Corn-peanut
Corn-carrot-peanut
Hay (Bermuda) Pasture (Bermuda)
Slash pine Loblolly pine Longleaf pine

Management System Summaries

• Most efficient (SMS)

irrigation

MS1

Inputs increase

- Lowest fertilization
- Rye cover crop
- MS2 Efficient (SMS) irrigation
 - Medium N rateOat cover crop
- MS3 Least efficient (calendar) irrigation
 - Highest fertilization
 - No cover crops

Forages

- Lowest fertilization
- Lowest number of cuttings (hay)
- Medium
 fertilizatio
 - fertilization
- Medium number of cuttings (hay)
 - Highest fertilization
 - Most number of cuttings (hay)
- hest ilization st number of
 - Highest N rateShortest rotation age

Forests

No fertilization

Medium N rate

Longer rotation age

Lower initial planting

Medium rotation age

• No thinning

density

Thinning

• Thinning

Management Systems: Georgia

Current *Production* Systems

Corn-cotton-peanut Cotton-cotton-peanut

Slash pine Loblolly pine Longleaf pine Inputs increase

MS1

MS3

Management System Summaries

Crops

- SMS-based irrigation
- Lowest fertilization
- Rye cover crop
- Strip tillage
- UGA checkbook irrigation MS2
 - Medium N rate
 - No cover crop
 - Conventional tillage
 - Least efficient irrigation
 - Highest fertilization
 - No cover crops
 - Conventional tillage

Forests

- No thinning
- No fertilization
- Longer rotation age
- Lower initial planting density
- Thinning
- Medium N rate
- Medium rotation age
- Thinning
- Highest N rate
- Shortest rotation age

Georgia focused on:

Inputs

More

MS1: Most efficient irrigation, lowest N rate, cover crop, strip till

MS2: Efficient irrigation, medium N rate, no cover crop, conventional till

MS3: Least efficient irrigation, highest N rate, no cover crop, conventional till

Moving to the Regional Scale

Field-Scale Models

Regional/Watershed-Scale Models

Regional Scale Inputs and Outputs

Inputs \rightarrow "Levers or Scenarios"

Cropping/forest systems (e.g., corn-fallow-peanut; slash pine plantation)

Management systems (e.g., practices used for nutrient management, water management)

Soil types

Weather/climate data and scenarios

<u>Outputs</u>

Regional Economy

- Regional crop and forest production
- Aquifer/stream N concentrations
- Spring & stream flows
- Aquifer water levels

Regional Scale Inputs and Outputs

Regional Economy

- Regional crop and forest production
- Aquifer/stream N concentrations
- Spring & stream flows
- Aquifer water levels

- Employment (# of jobs)
- Value added (\$; like GDP)
- Taxes (\$; local, state, federal)
- Labor Income (\$; money/benefits to employees)
- Industry Output (\$, sales revenue)
- Aquifer pumping (e.g., Million Gallons Per Day)
- Net recharge (Recharge Irrigation Applied; MGD)
- Streamflow (MGD or ft³/s)
- Aquifer level (ft)

 NO_3^-

- Nitrate leaching load (tons/year)
- Nitrate concentration in water entering spring (mg/L)
- Nitrate concentration in river (mg/L)

BOLD = Will be reported today

Regional-Scale Simple Scenarios

Simple Scenarios

- 1) All Crop/Forage Management Systems = MS 1
- 2) All Crop/Forage Management Systems = MS 2
- 3) All Crop/Forage Management Systems = MS 3
- For ALL Simple Scenarios: All Forestry is MS1

Interpreting Results and Envisioning Future Scenarios

- 1) Think about what other variables (outputs!) you might want to see
- 2) What land-use/management activities or climate drivers (**inputs/levers!**) do you expect to have the biggest effects on results?
- 3) Focus on magnitude and direction of *changes* (% change in an output)